The properties of GaMnN films grown by metalorganic chemical vapour deposition using Raman spectroscopy

被引:5
作者
Xing, Hai-Ying [1 ,2 ]
Niu, Ping-Juan [1 ,3 ]
Xie, Yu-Xin [2 ]
机构
[1] Engn Res Ctr High Power Solid State Lighting Appl, Tianjin 300387, Peoples R China
[2] Tianjin Polytech Univ, Sch Elect & Informat Engn, Tianjin 300387, Peoples R China
[3] Tianjin Polytech Univ, Sch Elect Engn & Automat, Tianjin 300387, Peoples R China
基金
中国国家自然科学基金;
关键词
diluted magnetic semiconductor; metalorganic chemical vapour deposition; Raman scattering; MOLECULAR-BEAM EPITAXY; PLASMON COUPLED MODES; OPTICAL-PROPERTIES; STRUCTURAL-PROPERTIES; SCATTERING;
D O I
10.1088/1674-1056/21/7/077801
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An investigation of room-temperature Raman scattering is carried out on ferromagnetic semiconductor GaMnN films grown by metalorganic chemical vapour deposition with different Mn content values. New bands around 300 and 669 cm(-1), that are not observed in undoped GaN, are found. They are assigned to disorder-activated mode and local vibration mode (LVM), respectively. After annealing, the intensity ratio between the LVM and E-2(high) mode, i.e., I-LVM/I-E2(high), increases. The LO phonon-plasmon coupled (LOPC) mode is found in GaMnN, and the frequency of the LOPC mode of GaMnN shifting toward higher side is observed with the increase in the Mn doping in GaN. The ferromagnetic character and the carrier density of our GaMnN sample are discussed.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] Kinetically controlled InN nucleation on GaN templates by metalorganic chemical vapour deposition
    Wang, H.
    Jiang, D. S.
    Zhu, J. J.
    Zhao, D. G.
    Liu, Z. S.
    Wang, Y. T.
    Zhang, S. M.
    Yang, H.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (14)
  • [32] Arsenic incorporation in GaN layers grown by metalorganic chemical vapor deposition
    Na, Hyunseok
    JOURNAL OF CRYSTAL GROWTH, 2010, 312 (12-13) : 2019 - 2024
  • [33] Characterization of MgxZn1 - xO thin films grown on sapphire substrates by metalorganic chemical vapor deposition
    Wu, C. C.
    Wuu, D. S.
    Lin, P. R.
    Chen, T. N.
    Horng, R. H.
    Ou, S. L.
    Tu, Y. L.
    Wei, C. C.
    Feng, Z. C.
    THIN SOLID FILMS, 2011, 519 (06) : 1966 - 1970
  • [34] Control and improvement of crystalline cracking from GaN thin films grown on Si by metalorganic chemical vapor deposition
    Yu, JW
    Lin, HC
    Feng, ZC
    Wang, LS
    Tripathy, S
    Chua, SJ
    THIN SOLID FILMS, 2006, 498 (1-2) : 108 - 112
  • [35] Optical properties of SnO2 thin films grown by atmospheric pressure chemical vapour deposition oxidizing SnCl4
    Davazoglou, D
    THIN SOLID FILMS, 1997, 302 (1-2) : 204 - 213
  • [36] Optical and optoelectronic properties of gallium oxide films fabricated by the chemical vapour deposition method
    Jubu, Peverga R.
    Bem, Terngu T.
    Ndeze, Urenyang I.
    Danladi, Eli
    Kyesmen, Pannan I.
    Mbah, Vitalis
    Benourdja, Saadia
    Hile, Dehin D.
    Atsuwe, Aondofa B.
    Yam, Fong K.
    PHYSICA B-CONDENSED MATTER, 2024, 678
  • [37] Epitaxial and polycrystalline BaFe12O19 thin films grown by chemical vapour deposition
    Pignard, S
    Vincent, H
    Sénateur, JP
    THIN SOLID FILMS, 1999, 350 (1-2) : 119 - 123
  • [38] Identifying the stacking order of multilayer graphene grown by chemical vapor deposition via Raman spectroscopy
    Lin, Miao-Ling
    Chen, Tao
    Lu, Wei
    Tan, Qing-Hai
    Zhao, Pei
    Wang, Hong-Tao
    Xu, Yang
    Tan, Ping-Heng
    JOURNAL OF RAMAN SPECTROSCOPY, 2018, 49 (01) : 46 - 53
  • [39] Low-temperature metalorganic chemical vapour deposition of AIN for surface passivation of GaAs
    Fujieda, S
    Mizuta, M
    Matsumoto, Y
    ADVANCED MATERIALS FOR OPTICS AND ELECTRONICS, 1996, 6 (03): : 127 - 134
  • [40] Nitrogen incorporation in SnO2 thin films grown by chemical vapor deposition
    Jiang, Jie
    Lu, Yinmei
    Kramm, Benedikt
    Michel, Fabian
    Reindl, Christian T.
    Kracht, Max E.
    Klar, Peter J.
    Meyer, Bruno K.
    Eickhoff, Martin
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2016, 253 (06): : 1087 - 1092