Toward predictive food process models: A protocol for parameter estimation

被引:40
作者
Vilas, Carlos [1 ]
Arias-Mendez, Ana [1 ]
Garcia, Miriam R. [1 ]
Alonso, Antonio A. [1 ]
Balsa-Canto, E. [1 ]
机构
[1] CSIC, Bioproc Engn Grp, IIM, C Eduardo Cabello 6, Vigo 36208, Spain
关键词
Model identification; parameter estimation; identifiability; experimental design; food process engineering; GLOBAL IDENTIFIABILITY; THERMAL-DIFFUSIVITY; INVERSE METHOD; SYSTEMS; DESIGN; OPTIMIZATION; QUALITY; HEAT; DYNAMICS; TOOLBOX;
D O I
10.1080/10408398.2016.1186591
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
Mathematical models, in particular, physics-based models, are essential tools to food product and process design, optimization and control. The success of mathematical models relies on their predictive capabilities. However, describing physical, chemical and biological changes in food processing requires the values of some, typically unknown, parameters. Therefore, parameter estimation from experimental data is critical to achieving desired model predictive properties. This work takes a new look into the parameter estimation (or identification) problem in food process modeling. First, we examine common pitfalls such as lack of identifiability and multimodality. Second, we present the theoretical background of a parameter identification protocol intended to deal with those challenges. And, to finish, we illustrate the performance of the proposed protocol with an example related to the thermal processing of packaged foods.
引用
收藏
页码:436 / 449
页数:14
相关论文
共 44 条
[1]   A complete dynamic model for the thermal processing of bioproducts in batch units and its application to controller design [J].
Alonso, AA ;
Banga, JR ;
PerezMartin, R .
CHEMICAL ENGINEERING SCIENCE, 1997, 52 (08) :1307-1322
[2]   Modeling Bacterial Population Growth from Stochastic Single-Cell Dynamics [J].
Alonso, Antonio A. ;
Molina, Ignacio ;
Theodoropoulos, Constantinos .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2014, 80 (17) :5241-5253
[3]  
[Anonymous], 1999, SYSTEM IDENTIFICATIO
[4]   Optimal design of dynamic experiments for improved estimation of kinetic parameters of thermal degradation [J].
Balsa-Canto, Eva ;
Rodriguez-Fernandez, Maria ;
Banga, Julio R. .
JOURNAL OF FOOD ENGINEERING, 2007, 82 (02) :178-188
[5]   AMIGO, a toolbox for advanced model identification in systems biology using global optimization [J].
Balsa-Canto, Eva ;
Banga, Julio R. .
BIOINFORMATICS, 2011, 27 (16) :2311-2313
[6]   An iterative identification procedure for dynamic modeling of biochemical networks [J].
Balsa-Canto, Eva ;
Alonso, Antonio A. ;
Banga, Julio R. .
BMC SYSTEMS BIOLOGY, 2010, 4
[7]   Improving food processing using modern optimization methods [J].
Banga, JR ;
Balsa-Canto, E ;
Moles, CG ;
Alonso, AA .
TRENDS IN FOOD SCIENCE & TECHNOLOGY, 2003, 14 (04) :131-144
[8]   Quality and safety models and optimization as part of computer-integrated manufacturing [J].
Banga, Julio R. ;
Balsa-Canto, Eva ;
Alonso, Antonio A. .
COMPREHENSIVE REVIEWS IN FOOD SCIENCE AND FOOD SAFETY, 2008, 7 (01) :168-174
[9]   DAISY:: A new software tool to test global identifiability of biological and physiological systems [J].
Bellu, Giuseppina ;
Saccomani, Maria Pia ;
Audoly, Stefania ;
D'Angio, Leontina .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2007, 88 (01) :52-61
[10]  
Bruin S, 2003, Compr Rev Food Sci Food Saf, V2, P42, DOI 10.1111/j.1541-4337.2003.tb00015.x