Matrix integrals and several integrable differential-difference systems

被引:7
作者
Hu, Xing-Biao
Zhao, Jun-Xiao
Li, Chun-Xia
机构
[1] Chinese Acad Sci, Inst Computat Math & Sci Engn Comp, Acad Math & Syst Sci, Beijing 100080, Peoples R China
[2] Grad Univ, Chinese Acad Sci, Dept Math, Beijing 100049, Peoples R China
[3] Tsing Hua Univ, Dept Math Sci, Beijing 100084, Peoples R China
关键词
matrix integrals; Pfaffian; Casorati determinant; two-dimensional Toda lattice; differential-difference KP equation; semi-discrete Toda lattice;
D O I
10.1143/JPSJ.75.054003
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the relations between three special forms of matrix integrals and their associated integrable differential-difference systems are considered. It turns out that these matrix integrals with special = 2 and 1,4 satisfy the differential-difference KP equation, the two-dimensional Toda lattice, the semi-discrete Toda equation and their Pfaffianized systems, respectively.
引用
收藏
页数:5
相关论文
共 24 条
[1]  
Adler M, 2002, DUKE MATH J, V112, P1
[2]   Classical skew orthogonal polynomials and random matrices [J].
Adler, M ;
Forrester, PJ ;
Nagao, T ;
van Moerbeke, P .
JOURNAL OF STATISTICAL PHYSICS, 2000, 99 (1-2) :141-170
[3]   Rational solutions to the Pfaff lattice and Jack polynomials [J].
Adler, M ;
Kuznetsov, VB ;
Van Moerbeke, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :1365-1405
[4]   Pfaff τ-functions [J].
Adler, M ;
Shiota, T ;
van Moerbeke, P .
MATHEMATISCHE ANNALEN, 2002, 322 (03) :423-476
[5]   Hermitian, symmetric and symplectic random ensembles: PDEs for the distribution of the spectrum [J].
Adler, M ;
van Moerbeke, P .
ANNALS OF MATHEMATICS, 2001, 153 (01) :149-189
[6]  
[Anonymous], 1980, DIRECT METHOD SOLITO
[7]  
CAIENIELLO ER, 1973, COMBINATORICS RENOMA
[8]   METHOD FOR GENERATING DISCRETE SOLITON-EQUATIONS .1. [J].
DATE, E ;
JINBO, M ;
MIWA, T .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1982, 51 (12) :4116-4124
[9]  
de Bruijn N. G., 1955, J. Indian Math. Soc., V19, P133, DOI DOI 10.18311/JIMS/1955/17010.31
[10]   Pfaffianization of the discrete KP equation [J].
Gilson, CR ;
Nimmo, JJC ;
Tsujimoto, S .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (48) :10569-10575