WELL-POSEDNESS FOR THE SUPERCRITICAL GKDV EQUATION

被引:6
作者
Strunk, Nils [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33501 Bielefeld, Germany
关键词
Korteweg-de Vries equation; KdV-like equations; well-posedness; supercritical; Cauchy problem; Besov space; SCATTERING;
D O I
10.3934/cpaa.201.4.13.527
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider the supercritical generalized Korteweg-de Vries equation partial derivative t psi + partial derivative(xxx)psi+ partial derivative x(vertical bar psi vertical bar(p-1)psi) = 0, where 5 <= p is an element of R. We prove a local well-posedness result in the homogeneous Besov space B-infinity(s,p,2) (R), where s(p) = 1/2 - 2/p-1 is the scaling critical index. In particular local well-posedness in the smaller inhomogeneous Sobolev space H(s)p (R) can be proved similarly. As a byproduct a global well-posedness result for small initial data is also obtained.
引用
收藏
页码:527 / 542
页数:16
相关论文
共 14 条
[1]  
BERGH J., 1976, GRUNDLEHREN MATH WIS
[2]  
Christ M, 2003, AM J MATH, V125, P1235
[3]  
Farah Luiz G., 2011, MATH RES LETT, V18, P357
[4]  
Grünrock A, 2005, DIFFER INTEGRAL EQU, V18, P1333
[5]   Well-posedness and scattering for the KP-II equation in a critical space (vol 26, pg 917, 2009) [J].
Hadac, Martin ;
Herr, Sebastian ;
Koch, Herbert .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2010, 27 (03) :971-972
[6]   Well-posedness and scattering for the KP-II equation in a critical space [J].
Hadac, Martin ;
Herr, Sebastian ;
Koch, Herbert .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (03) :917-941
[7]  
Kenig Carlos E., 1993, COMMUN PUR APPL MATH, V46, P527
[8]   A bilinear estimate with applications to the KdV equation [J].
Kenig, CE ;
Ponce, G ;
Vega, L .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 9 (02) :573-603
[9]   Dispersive estimates for principally normal pseudodifferential operators [J].
Koch, H ;
Tataru, D .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2005, 58 (02) :217-284
[10]   SMALL DATA SCATTERING AND SOLITON STABILITY IN (H) over dot-1/6 FOR THE QUARTIC KDV EQUATION [J].
Koch, Herbert ;
Marzuola, Jeremy L. .
ANALYSIS & PDE, 2012, 5 (01) :145-198