A multiple dataset approach for 30-m resolution land cover mapping: a case study of continental Africa

被引:31
作者
Feng, Duole [1 ]
Yu, Le [1 ,2 ]
Zhao, Yuanyan [1 ]
Cheng, Yuqi [1 ]
Xu, Yidi [1 ]
Li, Congcong [3 ]
Gong, Peng [1 ,2 ]
机构
[1] Tsinghua Univ, Dept Earth Syst Sci, Minist Educ, Key Lab Earth Syst Modeling, Beijing 100084, Peoples R China
[2] Joint Ctr Global Change Studies, Beijing, Peoples R China
[3] Univ Calif Berkeley, Dept Environm Sci Policy & Management, Berkeley, CA 94720 USA
基金
中国国家自然科学基金;
关键词
TIME-SERIES; SAMPLE SET; FROM-GLC; MODIS; MAP; CROPLAND; UNCERTAINTY; PRODUCT; GLC2000; FOREST;
D O I
10.1080/01431161.2018.1452073
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Recent developments in global land-cover mapping have focused on spatial resolution improvement with more heterogeneous features to integrate spatial, spectral and temporal information. In this study, hundreds of features derived from four seasonal Landsat 8 OLI (Operational Land Imager) spectral bands, Moderate Resolution Imaging Spectroradiometer (MODIS) time series vegetation index (VI) data, night-time light (NTL), digital elevation models (DEM) and climatic variables were used for land cover mapping with a target 30-m resolution for the whole African continent. In total, 49,007 training samples (from 11,231 locations) and 23,803 validation samples (from 5,414 locations) interpreted from seasonal Landsat, MODIS Normalized Difference Vegetation Index (NDVI) time series and high-resolution images in Google Earth were used for classifier training (Random Forest) and map validation. Overall accuracy was 76% at 30-m spatial resolution, which is better than previous land cover mapping for the African continent. Besides, accuracies for cropland were improved dramatically by more than 10%. Our method also addressed many remaining issues for 30-m mapping (e.g. boundary effects and declines in resolution). This framework is promising for automatic and efficient global land cover mapping resulting in better visual effects and classification accuracy.
引用
收藏
页码:3926 / 3938
页数:13
相关论文
共 37 条
[11]   Mapping global cropland and field size [J].
Fritz, Steffen ;
See, Linda ;
McCallum, Ian ;
You, Liangzhi ;
Bun, Andriy ;
Moltchanova, Elena ;
Duerauer, Martina ;
Albrecht, Fransizka ;
Schill, Christian ;
Perger, Christoph ;
Havlik, Petr ;
Mosnier, Aline ;
Thornton, Philip ;
Wood-Sichra, Ulrike ;
Herrero, Mario ;
Becker-Reshef, Inbal ;
Justice, Chris ;
Hansen, Matthew ;
Gong, Peng ;
Aziz, Sheta Abdel ;
Cipriani, Anna ;
Cumani, Renato ;
Cecchi, Giuliano ;
Conchedda, Giulia ;
Ferreira, Stefanus ;
Gomez, Adriana ;
Haffani, Myriam ;
Kayitakire, Francois ;
Malanding, Jaiteh ;
Mueller, Rick ;
Newby, Terence ;
Nonguierma, Andre ;
Olusegun, Adeaga ;
Ortner, Simone ;
Rajak, D. Ram ;
Rocha, Jansle ;
Schepaschenko, Dmitry ;
Schepaschenko, Maria ;
Terekhov, Alexey ;
Tiangwa, Alex ;
Vancutsem, Christelle ;
Vintrou, Elodie ;
Wu Wenbin ;
van der Velde, Marijn ;
Dunwoody, Antonia ;
Kraxner, Florian ;
Obersteiner, Michael .
GLOBAL CHANGE BIOLOGY, 2015, 21 (05) :1980-1992
[12]   Comparison of global and regional land cover maps with statistical information for the agricultural domain in Africa [J].
Fritz, Steffen ;
See, Linda ;
Rembold, Felix .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2010, 31 (09) :2237-2256
[13]   Finer resolution observation and monitoring of global land cover: first mapping results with Landsat TM and ETM+ data [J].
Gong, Peng ;
Wang, Jie ;
Yu, Le ;
Zhao, Yongchao ;
Zhao, Yuanyuan ;
Liang, Lu ;
Niu, Zhenguo ;
Huang, Xiaomeng ;
Fu, Haohuan ;
Liu, Shuang ;
Li, Congcong ;
Li, Xueyan ;
Fu, Wei ;
Liu, Caixia ;
Xu, Yue ;
Wang, Xiaoyi ;
Cheng, Qu ;
Hu, Luanyun ;
Yao, Wenbo ;
Zhang, Han ;
Zhu, Peng ;
Zhao, Ziying ;
Zhang, Haiying ;
Zheng, Yaomin ;
Ji, Luyan ;
Zhang, Yawen ;
Chen, Han ;
Yan, An ;
Guo, Jianhong ;
Yu, Liang ;
Wang, Lei ;
Liu, Xiaojun ;
Shi, Tingting ;
Zhu, Menghua ;
Chen, Yanlei ;
Yang, Guangwen ;
Tang, Ping ;
Xu, Bing ;
Giri, Chandra ;
Clinton, Nicholas ;
Zhu, Zhiliang ;
Chen, Jin ;
Chen, Jun .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2013, 34 (07) :2607-2654
[14]   A comparison of the IGBP DISCover and University of Maryland 1km global land cover products [J].
Hansen, MC ;
Reed, B .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2000, 21 (6-7) :1365-1373
[15]   Some challenges in global land cover mapping: An assessment of agreement and accuracy in existing 1 km datasets [J].
Herold, M. ;
Mayaux, P. ;
Woodcock, C. E. ;
Baccini, A. ;
Schmullius, C. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (05) :2538-2556
[16]  
Kalensky Z.D., 1998, Can. J. Remote Sens, V24, P292, DOI [10.1080/07038992.1998.10855250, DOI 10.1080/07038992.1998.10855250]
[17]   Optical and SAR sensor synergies for forest and land cover mapping in a tropical site in West Africa [J].
Laurin, Gaia Vaglio ;
Liesenberg, Veraldo ;
Chen, Qi ;
Guerriero, Leila ;
Del Frate, Fabio ;
Bartolini, Antonio ;
Coomes, David ;
Wilebore, Beccy ;
Lindsell, Jeremy ;
Valentini, Riccardo .
INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2013, 21 :7-16
[18]   How Reliable is the MODIS Land Cover Product for Crop Mapping Sub-Saharan Agricultural Landscapes? [J].
Leroux, Louise ;
Jolivot, Audrey ;
Begue, Agnes ;
Lo Seen, Danny ;
Zoungrana, Bernardin .
REMOTE SENSING, 2014, 6 (09) :8541-8564
[19]   The first all-season sample set for mapping global land cover with Landsat-8 data [J].
Li, Congcong ;
Gong, Peng ;
Wang, Jie ;
Zhu, Zhiliang ;
Biging, Gregory S. ;
Yuan, Cui ;
Hu, Tengyun ;
Zhang, Haiying ;
Wang, Qi ;
Li, Xuecao ;
Liu, Xiaoxuan ;
Xu, Yidi ;
Guo, Jing ;
Liu, Caixia ;
Hackman, Kwame O. ;
Zhang, Meinan ;
Cheng, Yuqi ;
Yu, Le ;
Yang, Jun ;
Huang, Huabing ;
Clinton, Nicholas .
SCIENCE BULLETIN, 2017, 62 (07) :508-515
[20]   An all-season sample database for improving land-cover mapping of Africa with two classification schemes [J].
Li, Congcong ;
Gong, Peng ;
Wang, Jie ;
Yuan, Cui ;
Hu, Tengyun ;
Wang, Qi ;
Yu, Le ;
Clinton, Nicholas ;
Li, Mengna ;
Guo, Jing ;
Feng, Duole ;
Huang, Conghong ;
Zhan, Zhicheng ;
Wang, Xiaoyi ;
Xu, Bo ;
Nie, Yaoyu ;
Hackman, Kwame .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2016, 37 (19) :4623-4647