Catalytic Properties of Phosphate-Coated CuFe2O4 Nanoparticles for Phenol Degradation
被引:21
作者:
Othman, Israa
论文数: 0引用数: 0
h-index: 0
机构:
Khalifa Univ Sci & Technol, Dept Chem, SAN Campus,POB 2533, Abu Dhabi, U Arab EmiratesKhalifa Univ Sci & Technol, Dept Chem, SAN Campus,POB 2533, Abu Dhabi, U Arab Emirates
Othman, Israa
[1
]
Abu Haija, Mohammad
论文数: 0引用数: 0
h-index: 0
机构:
Khalifa Univ Sci & Technol, Dept Chem, SAN Campus,POB 2533, Abu Dhabi, U Arab EmiratesKhalifa Univ Sci & Technol, Dept Chem, SAN Campus,POB 2533, Abu Dhabi, U Arab Emirates
Abu Haija, Mohammad
[1
]
Banat, Fawzi
论文数: 0引用数: 0
h-index: 0
机构:
Khalifa Univ Sci & Technol, Dept Chem Engn, SAN Campus,POB 2533, Abu Dhabi, U Arab EmiratesKhalifa Univ Sci & Technol, Dept Chem, SAN Campus,POB 2533, Abu Dhabi, U Arab Emirates
Banat, Fawzi
[2
]
机构:
[1] Khalifa Univ Sci & Technol, Dept Chem, SAN Campus,POB 2533, Abu Dhabi, U Arab Emirates
[2] Khalifa Univ Sci & Technol, Dept Chem Engn, SAN Campus,POB 2533, Abu Dhabi, U Arab Emirates
Copper ferrite (CuFe2O4) nanoparticles were prepared using the sol-gel autocombustion method and then coated with phosphate using different treatments with H3PO4. The structural and chemical properties of the phosphate-coated CuFe2O4 nanoparticles were controlled by changing the concentration of H3PO4 during the coating process. The prepared nanoparticles were characterized using XRD, FTIR, SEM, and EDS which provided information about the catalysts' structure, chemical composition, purity, and morphology. The catalytic and photocatalytic activities of the phosphate-coated CuFe2O4 samples were tested and evaluated for the degradation of phenol using HPLC. The prepared nanoparticles successfully emerged as excellent heterogeneous Fenton-type catalysts for phenol degradation. The phosphate-coated CuFe2O4 catalysts exhibited a higher catalytic activity compared with the uncoated CuFe2O4 ones. Such a higher catalytic performance can be attributed to enhanced morphological, electronic, and chemical properties of the phosphate-coated CuFe2O4 nanoparticles. Additionally, the phosphate-coated CuFe2O4 nanoparticles also revealed a higher catalytic activity compared with TiO2 nanoparticles. Different experimental conditions were investigated, and complete removal of phenol was achieved under specific conditions.