Universal fractional map and cascade of bifurcations type attractors

被引:32
作者
Edelman, M. [1 ,2 ]
机构
[1] Yeshiva Univ, Stern Coll, Dept Phys, New York, NY 10016 USA
[2] NYU, Courant Inst Math Sci, New York, NY 10012 USA
关键词
DIFFERENTIAL-EQUATIONS; ADAPTATION; CORTEX; ORDER;
D O I
10.1063/1.4819165
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We modified the way in which the Universal Map is obtained in the regular dynamics to derive the Universal alpha-Family of Maps depending on a single parameter alpha > 0, which is the order of the fractional derivative in the nonlinear fractional differential equation describing a system experiencing periodic kicks. We consider two particular alpha-families corresponding to the Standard and Logistic Maps. For fractional alpha < 2 in the area of parameter values of the transition through the period doubling cascade of bifurcations from regular to chaotic motion in regular dynamics corresponding fractional systems demonstrate a new type of attractors-cascade of bifurcations type trajectories. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:11
相关论文
共 67 条
[1]  
Anderson J.R., 1995, LEARNING MEMORY INTE
[2]  
[Anonymous], 2000, Applications of Fractional Calculus in Physics
[3]  
[Anonymous], 1975, MATH THEORIES POPULA
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
Arrowsmith David K, 1990, INTRO DYNAMICAL SYST
[6]  
Brauer F., 2012, Texts in Applied Mathematics, V2
[7]   On the simplest fractional-order memristor-based chaotic system [J].
Cafagna, Donato ;
Grassi, Giuseppe .
NONLINEAR DYNAMICS, 2012, 70 (02) :1185-1197
[8]  
Caponetto R., 2010, WORLD SCI SERIES N A
[9]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[10]   MEMRISTOR - MISSING CIRCUIT ELEMENT [J].
CHUA, LO .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1971, CT18 (05) :507-+