Diffusion of test particles in stochastic magnetic fields for small Kubo numbers

被引:26
作者
Neuer, M [1 ]
Spatschek, KH [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 1, D-40225 Dusseldorf, Germany
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 02期
关键词
D O I
10.1103/PhysRevE.73.026404
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Motion of charged particles in a collisional plasma with stochastic magnetic field lines is investigated on the basis of the so-called A-Langevin equation. Compared to the previously used V-Langevin model, here finite Larmor radius effects are taken into account. The A-Langevin equation is solved under the assumption that the Lagrangian correlation function for the magnetic field fluctuations is related to the Eulerian correlation function (in Gaussian form) via the Corrsin approximation. The latter is justified for small Kubo numbers. The velocity correlation function, being averaged with respect to the stochastic variables including collisions, leads to an implicit differential equation for the mean square displacement. From the latter, different transport regimes, including the well-known Rechester-Rosenbluth diffusion coefficient, are derived. Finite Larmor radius contributions show a decrease of the diffusion coefficient compared to the guiding center limit. The case of small (or vanishing) mean fields is also discussed.
引用
收藏
页数:11
相关论文
共 28 条
[1]  
Balescu R., 1988, Transport processes in plasmas
[2]   LANGEVIN EQUATION VERSUS KINETIC-EQUATION - SUBDIFFUSIVE BEHAVIOR OF CHARGED-PARTICLES IN A STOCHASTIC MAGNETIC-FIELD [J].
BALESCU, R ;
WANG, HD ;
MISGUICH, JH .
PHYSICS OF PLASMAS, 1994, 1 (12) :3826-3842
[3]  
BALESCU R, 2000, STAT DYNAMICS MATTER
[4]  
Balescu R, 2005, SER PLASMA PHYS
[5]   Transport of cosmic rays in chaotic magnetic fields [J].
Casse, F ;
Lemoine, M ;
Pelletier, G .
PHYSICAL REVIEW D, 2002, 65 (02)
[6]  
CORRSIN S, 1990, ATMOSPHERIC DIFFUSIO, P161
[7]   Suppression of large edge-localized modes in high-confinement DIII-D plasmas with a stochastic magnetic boundary [J].
Evans, TE ;
Moyer, RA ;
Thomas, PR ;
Watkins, JG ;
Osborne, TH ;
Boedo, JA ;
Doyle, EJ ;
Fenstermacher, ME ;
Finken, KH ;
Groebner, RJ ;
Groth, M ;
Harris, JH ;
La Haye, RJ ;
Lasnier, CJ ;
Masuzaki, S ;
Ohyabu, N ;
Pretty, DG ;
Rhodes, TL ;
Reimerdes, H ;
Rudakov, DL ;
Schaffer, MJ ;
Wang, G ;
Zeng, L .
PHYSICAL REVIEW LETTERS, 2004, 92 (23) :235003-1
[8]  
GALEEV AA, 1984, HDB PLASMA PHYS BASI, V1, P679
[9]  
Hazeltine R., 1992, Plasma Confinement
[10]   EFFECTIVE PLASMA HEAT-CONDUCTIVITY IN BRAIDED MAGNETIC-FIELD .1. QUASI-LINEAR LIMIT [J].
ISICHENKO, MB .
PLASMA PHYSICS AND CONTROLLED FUSION, 1991, 33 (07) :795-807