Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion

被引:57
作者
Coffey, WT [1 ]
Kalmykov, YP
Titov, SV
机构
[1] Univ Dublin Trinity Coll, Sch Engn, Dept Elect & Elect Engn, Dublin 2, Ireland
[2] Univ Perpignan, Ctr Etud Fondamentales, F-66860 Perpignan, France
[3] Russian Acad Sci, Inst Radio Engn & Elect, Fryazino 141190, Moscow Region, Russia
关键词
D O I
10.1063/1.1460860
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The Debye theory of dielectric relaxation of an assembly of polar molecules is reformulated using a fractional noninertial Fokker-Planck equation for the purpose of extending that theory to explain anomalous dielectric relaxation. The fractional Fourier-Planck equation in question is a generalization of the Smoluchowski equation for the dynamics of Brownian particles in configuration space to include anomalous relaxation. It is shown that this model can reproduce nonexponential Cole-Cole-type anomalous dielectric relaxation behavior and that it reduces to the classical Debye model of rotational diffusion when the anomalous exponent is unity. (C) 2002 American Institute of Physics.
引用
收藏
页码:6422 / 6426
页数:5
相关论文
共 23 条
[1]  
BANAVRAHAN D, 2000, DIFFUSION REACTIONS
[2]   Fractional Kramers equation [J].
Barkai, E ;
Silbey, RJ .
JOURNAL OF PHYSICAL CHEMISTRY B, 2000, 104 (16) :3866-3874
[3]  
CARMICHAEL R, 1855, TREATISE CALCULUS OP
[4]  
Coffey W., 1985, Adv. Chem. Phys, V63, P69
[5]   Inertial effects in anomalous dielectric relaxation [J].
Coffey, WT ;
Kalmykov, YP ;
Titov, SV .
PHYSICAL REVIEW E, 2002, 65 (03) :1-032102
[6]   Crossover formulas in the Kramers theory of thermally activated escape rates - Application to spin systems [J].
Coffey, WT ;
Garanin, DA ;
McCarthy, DJ .
ADVANCES IN CHEMICAL PHYSICS, VOL. 117, 2001, 117 :483-765
[7]   Dispersion and absorption in dielectrics I. Alternating current characteristics [J].
Cole, KS ;
Cole, RH .
JOURNAL OF CHEMICAL PHYSICS, 1941, 9 (04) :341-351
[8]  
Debye P. J. W., 1945, POLAR MOL
[9]  
EVANS MW, 1982, MOL DYNAMICS THEORY
[10]  
Frohlich H., 1958, THEORY DIELECTRICS