Spanning trees in complete bipartite graphs and resistance distance in nearly complete bipartite graphs

被引:21
作者
Ge, Jun [1 ]
Dong, Fengming [2 ]
机构
[1] Sichuan Normal Univ, Sch Math Sci, Chengdu, Peoples R China
[2] Nanyang Technol Univ, Natl Inst Educ, Singapore, Singapore
关键词
Spanning tree; Complete bipartite graph; Electrical network; Effective resistance;
D O I
10.1016/j.dam.2020.02.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the theory of electrical network, we first obtain simple formulas for the number of spanning trees of a complete bipartite graph containing a certain matching or a certain tree. Then we compute the effective resistances (i.e., resistance distance in graphs) in the nearly complete bipartite graph G(m, n, p) = K-m,K-n - pK(2) (p <= min{m, n}), which extends a recent result (Ye and Yan, 2019) on the effective resistances in G(n, n, p). As a corollary, we obtain the Kirchhoff index of G(m, n, p) which extends a previous result by Shi and Chen. Using the effective resistances in G(m, n, p), we find a formula for the number of spanning trees of G(m, n, p). In the end, we prove a general result for the number of spanning trees of a complete bipartite graph containing several edges in a certain matching and avoiding others. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:542 / 554
页数:13
相关论文
共 25 条
  • [1] [Anonymous], 1889, A theorem of trees
  • [2] [Anonymous], 1993, COMBINATORIAL PROBLE
  • [3] [Anonymous], 1967, P 1 ASILOMAR C CIRCU
  • [4] [Anonymous], 1984, CARUS MATH MONOGRAPH
  • [5] [Anonymous], 1949, REISSNER ANIVERSARY
  • [6] Resistance distance local rules
    Chen, Haiyan
    Zhang, Fuji
    [J]. JOURNAL OF MATHEMATICAL CHEMISTRY, 2008, 44 (02) : 405 - 417
  • [7] Random walks and the effective resistance sum rules
    Chen, Haiyan
    [J]. DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1691 - 1700
  • [8] Fiedler M., 1958, Cas. Pest. Mat., V83, P214
  • [9] Resistance distance in complete n-partite graphs
    Gervacio, Severino V.
    [J]. DISCRETE APPLIED MATHEMATICS, 2016, 203 : 53 - 61
  • [10] Kirchhoff G.G., 1847, ANN PHYS-NEW YORK, V72, P497, DOI [DOI 10.1002/ANDP.18471481202, 10.1002/andp.18471481202]