Nonlinear spectroscopy of Sr atoms in an optical cavity for laser stabilization

被引:28
作者
Christensen, Bjarke T. R. [1 ]
Henriksen, Martin R. [1 ]
Schaffer, Stefan A. [1 ]
Westergaard, Philip G. [2 ]
Tieri, David [3 ,4 ]
Ye, Jun [3 ,4 ]
Holland, Murray J. [3 ,4 ]
Thomsen, Jan W. [1 ]
机构
[1] Univ Copenhagen, Niels Bohr Inst, DK-2100 Copenhagen, Denmark
[2] Danish Fundamental Metrol, DK-2800 Lyngby, Denmark
[3] NIST, JILA, Boulder, CO 80309 USA
[4] Univ Colorado, Boulder, CO 80309 USA
来源
PHYSICAL REVIEW A | 2015年 / 92卷 / 05期
基金
美国国家科学基金会;
关键词
CLOCK; NOISE;
D O I
10.1103/PhysRevA.92.053820
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the nonlinear interaction of a cold sample of Sr-88 atoms coupled to a single mode of a low finesse optical cavity in the so-called bad cavity limit, and we investigate the implications for applications to laser stabilization. The atoms are probed on the weak intercombination line vertical bar 5s(2) S-1(0)> -vertical bar 5s5p P-3(1)> at 689 nm in a strongly saturated regime. Our measured observables include the atomic induced phase shift and absorption of the light field transmitted through the cavity represented by the complex cavity transmission coefficient. We demonstrate high signal-to-noise-ratio measurements of both quadratures-the cavity transmitted phase and absorption-by employing frequency modulation (FM) spectroscopy (noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy). We also show that when FM spectroscopy is employed in connection with a cavity locked to the probe light, observables are substantially modified compared to the free-space situation in which no cavity is present. Furthermore, the nonlinear dynamics of the phase dispersion slope is experimentally investigated, and the optimal conditions for laser stabilization are established. Our experimental results are compared to state-of-the-art cavity QED theoretical calculations.
引用
收藏
页数:7
相关论文
共 32 条
[1]   Optical Spectrum Analyzer with Quantum-Limited Noise Floor [J].
Bishof, M. ;
Zhang, X. ;
Martin, M. J. ;
Ye, Jun .
PHYSICAL REVIEW LETTERS, 2013, 111 (09)
[2]   An optical lattice clock with accuracy and stability at the 10-18 level [J].
Bloom, B. J. ;
Nicholson, T. L. ;
Williams, J. R. ;
Campbell, S. L. ;
Bishof, M. ;
Zhang, X. ;
Zhang, W. ;
Bromley, S. L. ;
Ye, J. .
NATURE, 2014, 506 (7486) :71-+
[3]   A steady-state superradiant laser with less than one intracavity photon [J].
Bohnet, Justin G. ;
Chen, Zilong ;
Weiner, Joshua M. ;
Meiser, Dominic ;
Holland, Murray J. ;
Thompson, James K. .
NATURE, 2012, 484 (7392) :78-81
[4]   Geophysical applicability of atomic clocks: direct continental geoid mapping [J].
Bondarescu, Ruxandra ;
Bondarescu, Mihai ;
Hetenyi, Gyoergy ;
Boschi, Lapo ;
Jetzer, Philippe ;
Balakrishna, Jayashree .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2012, 191 (01) :78-82
[5]   Active optical clock [J].
Chen JingBiao .
CHINESE SCIENCE BULLETIN, 2009, 54 (03) :348-352
[6]  
Cole GD, 2013, NAT PHOTONICS, V7, P644, DOI [10.1038/nphoton.2013.174, 10.1038/NPHOTON.2013.174]
[7]   Frequency Ratio of Two Optical Clock Transitions in 171Yb+ and Constraints on the Time Variation of Fundamental Constants [J].
Godun, R. M. ;
Nisbet-Jones, P. B. R. ;
Jones, J. M. ;
King, S. A. ;
Johnson, L. A. M. ;
Margolis, H. S. ;
Szymaniec, K. ;
Lea, S. N. ;
Bongs, K. ;
Gill, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (21)
[8]   New Method for Gravitational Wave Detection with Atomic Sensors [J].
Graham, Peter W. ;
Hogan, Jason M. ;
Kasevich, Mark A. ;
Rajendran, Surjeet .
PHYSICAL REVIEW LETTERS, 2013, 110 (17)
[9]   Improved Tests of Local Position Invariance Using 87Rb and 133Cs Fountains [J].
Guena, J. ;
Abgrall, M. ;
Rovera, D. ;
Rosenbusch, P. ;
Tobar, M. E. ;
Laurent, Ph ;
Clairon, A. ;
Bize, S. .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)
[10]   8 x 10-17 fractional laser frequency instability with a long room-temperature cavity [J].
Haefner, Sebastian ;
Falke, Stephan ;
Grebing, Christian ;
Vogt, Stefan ;
Legero, Thomas ;
Merimaa, Mikko ;
Lisdat, Christian ;
Sterr, Uwe .
OPTICS LETTERS, 2015, 40 (09) :2112-2115