Clique-width of graphs defined by one-vertex extensions

被引:25
作者
Rao, Michael [1 ]
机构
[1] Univ Montpellier 2, CNRS, LIRMM, F-34392 Montpellier 5, France
关键词
Graph classes; Vertex extension; Cographs; Distance-hereditary graphs; Clique-width;
D O I
10.1016/j.disc.2007.11.039
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a graph and u be a vertex of G. We consider the following operation: add a new vertex V Such that v does not distinguish any two vertices which are not distinguished by u. We call this operation a one-vertex extension. Adding a true twin, a false twin or a pendant vertex are cases of one-vertex extensions. Here we are interested in graph classes defined by a subset Of allowed one-vertex extension. Examples are trees, cographs and distance-hereditary graphs, We give a complete classification of theses classes with respect to their clique-width. We also introduce a new graph parameter called the modular-width, and we give a relation with the clique-width, (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:6157 / 6165
页数:9
相关论文
共 16 条
  • [1] [Anonymous], 1998, CONGR NUMER CONF J N
  • [2] DISTANCE-HEREDITARY GRAPHS
    BANDELT, HJ
    MULDER, HM
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (02) : 182 - 208
  • [3] Gem- and co-gem-free graphs have bounded clique-width
    Brandstädt, A
    Le, HO
    Mosca, R
    [J]. INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2004, 15 (01) : 163 - 185
  • [4] COMPLEMENT REDUCIBLE GRAPHS
    CORNEIL, DG
    LERCHS, H
    BURLINGHAM, LS
    [J]. DISCRETE APPLIED MATHEMATICS, 1981, 3 (03) : 163 - 174
  • [5] HANDLE-REWRITING HYPERGRAPH GRAMMARS
    COURCELLE, B
    ENGELFRIET, J
    ROZENBERG, G
    [J]. JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 1993, 46 (02) : 218 - 270
  • [6] DECOMPOSITION OF DIRECTED-GRAPHS
    CUNNINGHAM, WH
    [J]. SIAM JOURNAL ON ALGEBRAIC AND DISCRETE METHODS, 1982, 3 (02): : 214 - 228
  • [7] DEMONTGOLFIER F, 2005, ENDM, V22, P173
  • [8] TRANSITIV ORIENTIERBARE GRAPHEN
    GALLAI, T
    [J]. ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1967, 18 (1-2): : 25 - &
  • [9] Golumbic M. C., 2000, International Journal of Foundations of Computer Science, V11, P423, DOI 10.1142/S0129054100000260
  • [10] Characterizations for restricted graphs of NLC-width 2
    Gurski, Frank
    [J]. THEORETICAL COMPUTER SCIENCE, 2007, 372 (01) : 108 - 114