Parameter Estimation of Photovoltaic Models via Cuckoo Search
被引:198
作者:
Ma, Jieming
论文数: 0引用数: 0
h-index: 0
机构:
Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
Xian Jiaotong Liverpool Univ, Het 215123, Jiangsu, Peoples R ChinaUniv Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
Ma, Jieming
[1
,2
]
Ting, T. O.
论文数: 0引用数: 0
h-index: 0
机构:
Xian Jiaotong Liverpool Univ, Het 215123, Jiangsu, Peoples R ChinaUniv Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
Ting, T. O.
[2
]
Man, Ka Lok
论文数: 0引用数: 0
h-index: 0
机构:
Xian Jiaotong Liverpool Univ, Het 215123, Jiangsu, Peoples R ChinaUniv Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
Man, Ka Lok
[2
]
Zhang, Nan
论文数: 0引用数: 0
h-index: 0
机构:
Xian Jiaotong Liverpool Univ, Het 215123, Jiangsu, Peoples R ChinaUniv Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
Zhang, Nan
[2
]
Guan, Sheng-Uei
论文数: 0引用数: 0
h-index: 0
机构:
Xian Jiaotong Liverpool Univ, Het 215123, Jiangsu, Peoples R ChinaUniv Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
Guan, Sheng-Uei
[2
]
Wong, Prudence W. H.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, EnglandUniv Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
Wong, Prudence W. H.
[1
]
机构:
[1] Univ Liverpool, Dept Comp Sci, Liverpool L69 3BX, Merseyside, England
[2] Xian Jiaotong Liverpool Univ, Het 215123, Jiangsu, Peoples R China
Since conventional methods are incapable of estimating the parameters of Photovoltaic (PV) models with high accuracy, bioinspired algorithms have attracted significant attention in the last decade. Cuckoo Search (CS) is invented based on the inspiration of brood parasitic behavior of some cuckoo species in combination with the Levy flight behavior. In this paper, a CS-based parameter estimation method is proposed to extract the parameters of single-diode models for commercial PV generators. Simulation results and experimental data show that the CS algorithmis capable of obtaining all the parameters with extremely high accuracy, depicted by a low Root-Mean-Squared-Error (RMSE) value. The proposed method outperforms other algorithms applied in this study.