Towards automatic SAR-optical stereogrammetry over urban areas using very high resolution imagery

被引:18
作者
Qiu, Chunping [1 ]
Schmitt, Michael [1 ]
Zhu, Xiao Xiang [1 ,2 ]
机构
[1] Tech Univ Munich, Signal Proc Earth Observat, Munich, Germany
[2] German Aerosp Ctr DLR, Remote Sensing Technol Inst IMF, Wessling, Germany
基金
欧洲研究理事会;
关键词
Synthetic Aperture Radar (SAR); Optical images; Remote sensing; Data fusion; Stereogrammetry; FUSION;
D O I
10.1016/j.isprsjprs.2017.12.006
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
In this paper we discuss the potential and challenges regarding SAR-optical stereogrammetry for urban areas, using very-high-resolution (VHR) remote sensing imagery. Since we do this mainly from a geometrical point of view, we first analyze the height reconstruction accuracy to be expected for different stereogrammetric configurations. Then, we propose a strategy for simultaneous tie point matching and 3D reconstruction, which exploits an epipolar-like search window constraint. To drive the matching and ensure some robustness, we combine different established hand-crafted similarity measures. For the experiments, we use real test data acquired by the Worldview-2, TerraSAR-X and MEMPHIS sensors. Our results show that SAR-optical stereogrammetry using VHR imagery is generally feasible with 3D positioning accuracies in the meter-domain, although the matching of these strongly hetereogeneous multi-sensor data remains very challenging. (C) 2017 The Authors. Published by Elsevier B.V. on behalf of International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).
引用
收藏
页码:218 / 231
页数:14
相关论文
共 50 条
[31]   Classification of very high resolution SAR images of urban areas by dictionary-based mixture models, copulas and Markov random fields using textural features [J].
Voisin, Aurelie ;
Moser, Gabriele ;
Krylov, Vladimir A. ;
Serpico, Sebastiano B. ;
Zerubia, Josiane .
IMAGE AND SIGNAL PROCESSING FOR REMOTE SENSING XVI, 2010, 7830
[32]   Wavelet Compression and the Automatic Classification of Urban Environments Using High Resolution Multispectral Imagery and Laser Scanning Data [J].
J.B.K. Kiema ;
H.-P. Bähr .
GeoInformatica, 2001, 5 :165-179
[33]   Wavelet compression and the automatic classification of urban environments using high resolution multispectral imagery and laser scanning data [J].
Kiema, JBK ;
Bähr, HP .
GEOINFORMATICA, 2001, 5 (02) :165-179
[34]   The assessment of mangrove areas using high resolution multispectral airborne imagery [J].
Green, EP ;
Mumby, PJ ;
Edwards, AJ ;
Clark, CD ;
Ellis, AC .
JOURNAL OF COASTAL RESEARCH, 1998, 14 (02) :433-443
[35]   Full Semantic Constructed Network for Urban Use Classification From Very High-Resolution Optical Remote Sensing Imagery [J].
Dong, Shan ;
Zhuang, Yin ;
Chen, He ;
Zhang, Tong ;
Li, Lianlin ;
Long, Teng .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[36]   A Coarse-to-Fine Autofocus Approach for Very High-Resolution Airborne Stripmap SAR Imagery [J].
Li, Jincheng ;
Chen, Jie ;
Wang, Pengbo ;
Loffeld, Otmar .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (07) :3814-3829
[37]   Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (II) optimizing acquisition configurations [J].
Yin, Tiangang ;
Montesano, Paul M. ;
Cook, Bruce D. ;
Chavanon, Eric ;
Neigh, Christopher S. R. ;
Shean, David ;
Peng, Dongju ;
Lauret, Nicolas ;
Mkaouar, Ameni ;
Regaieg, Omar ;
Zhen, Zhijun ;
Qin, Rongjun ;
Gastellu-Etchegorry, Jean-Philippe ;
Morton, Douglas C. .
REMOTE SENSING OF ENVIRONMENT, 2023, 298
[38]   MAPPING LINEAR EROSION FEATURES USING HIGH AND VERY HIGH RESOLUTION SATELLITE IMAGERY [J].
Desprats, J. F. ;
Raclot, D. ;
Rousseau, M. ;
Cerdan, O. ;
Garcin, M. ;
Le Bissonnais, Y. ;
Ben Slimane, A. ;
Fouche, J. ;
Monfort-Climent, D. .
LAND DEGRADATION & DEVELOPMENT, 2013, 24 (01) :22-32
[39]   SAR, OPTICAL AND LIDAR DATA FUSION FOR THE HIGH RESOLUTION MAPPING OF NATURAL PROTECTED AREAS [J].
Guida, R. ;
Marcello, J. ;
Eugenio, F. .
2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, :3306-3309
[40]   Modeling forest canopy surface retrievals using very high-resolution spaceborne stereogrammetry: (I) methods and comparisons with actual data [J].
Yin, Tiangang ;
Montesano, Paul M. ;
Cook, Bruce D. ;
Chavanon, Eric ;
Neigh, Christopher S. R. ;
Shean, David ;
Peng, Dongju ;
Lauret, Nicolas ;
Mkaouar, Ameni ;
Morton, Douglas C. ;
Regaieg, Omar ;
Zhen, Zhijun ;
Gastellu-Etchegorry, Jean-Philippe .
REMOTE SENSING OF ENVIRONMENT, 2023, 298