A FOURIER ANALYTIC APPROACH TO THE PROBLEM OF MUTUALLY UNBIASED BASES

被引:6
作者
Matolcsi, Mate [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Inst Math, H-1364 Budapest, Hungary
关键词
Mutually unbiased bases; complex Hadamard matrices; difference sets; Delsarte's method; COMPLEX HADAMARD-MATRICES; STATE DETERMINATION; ORDER; 6; BOUNDS; DIMENSIONS;
D O I
10.1556/SScMath.49.2012.4.1221
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new approach to the problem of mutually unbiased bases (MUBs), based on a Fourier analytic technique borrowed from additive combinatorics. The method provides a short and elegant generalization of the fact that there are at most d + 1 MUBs in C-d. It may also yield a proof that no complete system of MUBs exists in some composite dimensions - a long standing open problem.
引用
收藏
页码:482 / 491
页数:10
相关论文
共 31 条
[21]   Two-parameter complex Hadamard matrices for N=6 [J].
Karlsson, Bengt R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (08)
[22]  
Klappenecker A, 2004, LECT NOTES COMPUT SC, V2948, P137
[23]   Towards a Classification of 6 x 6 Complex Hadamard Matrices [J].
Matolcsi, Mate ;
Szollosi, Ferenc .
OPEN SYSTEMS & INFORMATION DYNAMICS, 2008, 15 (02) :93-108
[24]  
Ruzsa I., 1984, PERIOD MATH HUNG, V15, P205, DOI [10.1007/BF02454169, DOI 10.1007/BF02454169]
[25]   Unbiased bases (Hadamards) for six-level systems: Four ways from Fourier [J].
Skinner, A. J. ;
Newell, V. A. ;
Sanchez, R. .
JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (01)
[26]  
Szollosi F., J LONDON MA IN PRESS
[27]  
Szöllosi F, 2010, P AM MATH SOC, V138, P921
[28]  
WEINER M., P AMS IN PRESS
[29]  
Wocjan P, 2005, QUANTUM INFORM COMPU, V5, P93
[30]   OPTIMAL STATE DETERMINATION BY MUTUALLY UNBIASED MEASUREMENTS [J].
WOOTTERS, WK ;
FIELDS, BD .
ANNALS OF PHYSICS, 1989, 191 (02) :363-381