Thermoacoustic Imaging and Spectroscopy for Enhanced Breast Cancer Detection

被引:7
作者
Bauer, Daniel R. [1 ,2 ]
Wang, Xiong [3 ]
Vollin, Jeff [4 ]
Xin, Hao [3 ]
Witte, Russell S. [1 ,2 ]
机构
[1] Univ Arizona, Dept Radiol, Tucson, AZ 85724 USA
[2] Univ Arizona, Coll Opt Sci, Tucson, AZ 85724 USA
[3] Univ Arizona, Dept Elect & Comp Engn, Tucson, AZ 85724 USA
[4] Raytheon Corp, Raytheon Missile Syst, Tucson, AZ 85724 USA
来源
2011 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS) | 2011年
关键词
microwave imaging; mammography; early stage breast cancer; breast imaging; photoacoustic spectroscopy; DIELECTRIC-PROPERTIES; MICROWAVE; TOMOGRAPHY; TISSUES;
D O I
10.1109/ULTSYM.2011.0587
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Early detection of breast cancer is paramount for improved survival. Mammography, the gold standard for diagnostic breast imaging, has limited spatial resolution and often misses early tumors. In thermoacoustic (TA) imaging an incident microwave pulse is converted to ultrasound via localized thermoelastic expansion and creates an image of the sample's absorption. Single frequency thermoacoustic imaging failed in clinical studies to reliably discriminate malignant from healthy tissue. We hypothesize that limitations in TA technology severely reduced the capability and performance of previous imaging systems. We present initial experimental results using thermoacoustic imaging and spectroscopy for discrimination of fat and muscle tissue, water content and ethanol. This study demonstrates multi-frequency thermoacoustic spectroscopy using both the magnitude and slope of the TA signal between 2.7 and 3.1 GHz. The average slope of the thermoacoustic signal for ethanol was calculated to be -0.45 a.u./GHz, while water had an average TA slope of 0.56 a.u./GHz, clearly differentiating the two regions and consistent with their microwave absorption properties.
引用
收藏
页码:2364 / 2367
页数:4
相关论文
共 13 条
[1]   3-D photoacoustic and pulse echo imaging of prostate tumor progression in the mouse window chamber [J].
Bauer, Daniel R. ;
Olafsson, Ragnar ;
Montilla, Leonardo G. ;
Witte, Russell S. .
JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (02)
[2]   Spectroscopy enhances the information content of optical mammography [J].
Cerussi, AE ;
Jakubowski, D ;
Shah, N ;
Bevilacqua, F ;
Lanning, R ;
Berger, AJ ;
Hsiang, D ;
Butler, J ;
Holcombe, RF ;
Tromberg, BJ .
JOURNAL OF BIOMEDICAL OPTICS, 2002, 7 (01) :60-71
[3]  
CHAUDHARY SS, 1984, INDIAN J BIOCHEM BIO, V21, P76
[4]  
Fear EC, 2003, IEEE POTENTIALS, V22, P12, DOI 10.1109/MP.2003.1180933
[5]   Thermoacoustic CT with radio waves: A medical imaging paradigm [J].
Kruger, RA ;
Kopecky, KK ;
Aisen, AM ;
Reinecke, DR ;
Kruger, GA ;
Kiser, WL .
RADIOLOGY, 1999, 211 (01) :275-278
[6]   Scanning thermoacoustic tomography in biological tissue [J].
Ku, G ;
Wang, LHV .
MEDICAL PHYSICS, 2000, 27 (05) :1195-1202
[7]  
Ku G., 2005, TECHNOLOGY CANC RES, V4
[8]   A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries [J].
Lazebnik, Mariya ;
Popovic, Dijana ;
McCartney, Leah ;
Watkins, Cynthia B. ;
Lindstrom, Mary J. ;
Harter, Josephine ;
Sewall, Sarah ;
Ogilvie, Travis ;
Magliocco, Anthony ;
Breslin, Tara M. ;
Temple, Walley ;
Mew, Daphne ;
Booske, John H. ;
Okoniewski, Michal ;
Hagness, Susan C. .
PHYSICS IN MEDICINE AND BIOLOGY, 2007, 52 (20) :6093-6115
[9]   Multispectral near-infrared tomography:: a case study in compensating for water and lipid content in hemoglobin imaging of the breast [J].
McBride, TO ;
Pogue, BW ;
Poplack, S ;
Soho, S ;
Wells, WA ;
Jiang, SD ;
Österberg, UL ;
Paulsen, KD .
JOURNAL OF BIOMEDICAL OPTICS, 2002, 7 (01) :72-79
[10]   A clinical prototype for active microwave imaging of the breast [J].
Meaney, PM ;
Fanning, MW ;
Li, D ;
Poplack, SP ;
Paulsen, KD .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2000, 48 (11) :1841-1853