Pinned modes in lossy lattices with local gain and nonlinearity

被引:19
|
作者
Malomed, Boris A. [1 ]
Ding, Edwin [2 ]
Chow, K. W. [3 ]
Lai, S. K. [3 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Phys Elect, Sch Elect Engn, IL-69978 Tel Aviv, Israel
[2] Azusa Pacific Univ, Dept Math & Phys, Azusa, CA 91702 USA
[3] Univ Hong Kong, Dept Mech Engn, Hong Kong, Hong Kong, Peoples R China
来源
PHYSICAL REVIEW E | 2012年 / 86卷 / 03期
关键词
GINZBURG-LANDAU EQUATION; VORTEX SOLITONS; PLASMON-POLARITON; SOLITARY WAVES; LOCKING; PULSES; INSTABILITY; SCHRODINGER; IMPURITIES; STABILITY;
D O I
10.1103/PhysRevE.86.036608
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We introduce a discrete linear lossy system with an embedded "hot spot" (HS), i.e., a site carrying linear gain and complex cubic nonlinearity. The system can be used to model an array of optical or plasmonic waveguides, where selective excitation of particular cores is possible. Localized modes pinned to the HS are constructed in an implicit analytical form, and their stability is investigated numerically. Stability regions for the modes are obtained in the parameter space of the linear gain and cubic gain or loss. An essential result is that the interaction of the unsaturated cubic gain and self-defocusing nonlinearity can produce stable modes, although they may be destabilized by finite-amplitude perturbations. On the other hand, the interplay of the cubic loss and self-defocusing gives rise to a bistability.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Pinned modes in two-dimensional lossy lattices with local gain and nonlinearity
    Ding, Edwin
    Tang, A. Y. S.
    Chow, K. W.
    Malomed, Boris A.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2027):
  • [2] Symmetric and antisymmetric nonlinear modes supported by dual local gain in lossy lattices
    Chow, K. W.
    Ding, Edwin
    Malomed, B. A.
    Tang, A. Y. S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (01): : 63 - 77
  • [3] Analytic Mode Normalization for the Kerr Nonlinearity Parameter: Prediction of Nonlinear Gain for Leaky Modes
    Allayarov, I.
    Upendar, S.
    Schmidt, M. A.
    Weiss, T.
    PHYSICAL REVIEW LETTERS, 2018, 121 (21)
  • [4] Solitons in PT-symmetric optical lattices with spatially periodic modulation of nonlinearity
    He, Yingji
    Zhu, Xing
    Mihalache, Dumitru
    Liu, Jinglin
    Chen, Zhanxu
    OPTICS COMMUNICATIONS, 2012, 285 (15) : 3320 - 3324
  • [5] Analytic theory for parametric gain in lossy integrated waveguides
    Karlsson, Magnus
    Schroder, Jochen
    Zhao, Ping
    Andrekson, Peter A.
    2021 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2021,
  • [6] Continuation of normal modes in finite NLS lattices
    Panayotaros, Panayotis
    PHYSICS LETTERS A, 2010, 374 (38) : 3912 - 3919
  • [7] Delocalized nonlinear vibrational modes of triangular lattices
    Ryabov, Denis S.
    Chechin, George M.
    Upadhyaya, Abhisek
    Korznikova, Elena A.
    Dubinko, Vladimir I.
    Dmitriev, Sergey V.
    NONLINEAR DYNAMICS, 2020, 102 (04) : 2793 - 2810
  • [8] Light bullets in Bessel optical lattices with spatially modulated nonlinearity
    Ye, Fangwei
    Kartashov, Yaroslav V.
    Hu, Bambi
    Torner, Lluis
    OPTICS EXPRESS, 2009, 17 (14): : 11328 - 11334
  • [9] Numerical study on the instability of localized buckling modes in the axially compressed strut on a distributed-spring elastic foundation with softening quadratic nonlinearity
    Kang, Youn J.
    Cho, Yeunwoo
    JOURNAL OF ENGINEERING MATHEMATICS, 2020, 122 (01) : 117 - 137
  • [10] Discrete localized modes supported by an inhomogeneous defocusing nonlinearity
    Gligoric, Goran
    Maluckov, Aleksandra
    Hadzievski, Ljupco
    Malomed, Boris A.
    PHYSICAL REVIEW E, 2013, 88 (03):