Escaping geodesics in Riemannian surfaces with variable negative curvature

被引:6
|
作者
Melian, Maria, V [1 ]
Rodriguez, Jose M. [2 ]
Touris, Eva [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Fac Ciencias, Campus Cantoblanco, E-28049 Madrid, Spain
[2] Univ Carlos III Madrid, Dept Matemat, Escuela Politecn Super, Ave Univ 30, Leganes 28911, Madrid, Spain
关键词
Riemannian surface; Pinched negative curvature; Escaping geodesics; End; Gromov hyperbolic spaces; DIMENSION; MANIFOLDS;
D O I
10.1016/j.aim.2019.01.032
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we give a lower bound for the visual Hausdorff dimension of the geodesics escaping through different ends of Riemannian surfaces with pinched negative curvature. This allows to show that in any Riemannian surface with pinched negative curvature and infinite area there is a large set of geodesics escaping to infinity. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:928 / 971
页数:44
相关论文
共 50 条