TGFα transgenic mice -: A model of pancreatic cancer development

被引:35
作者
Greten, FR [1 ]
Wagner, M [1 ]
Weber, CK [1 ]
Zechner, U [1 ]
Adler, G [1 ]
Schmid, RM [1 ]
机构
[1] Univ Ulm, Dept Internal Med 1, D-89081 Ulm, Germany
关键词
pancreas; cancer; TGF alpha; p53; INK4; tumor progression;
D O I
10.1159/000055835
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
Pancreatic cancer is a devastating disease with a fatal prognosis due to late diagnosis and resistance to radiation and chemotherapy. The average survival after diagnosis is still 3 to 8 months. In the last few years genetic alterations in cancer-causing genes have been identified in tumors and putative premalignant lesions using microdissection techniques. However, the functional consequence of these genetic alterations for pancreatic growth and differentiation is unknown. TGF alpha overexpressed in the pancreas causes the development of tubular structures and fibrosis. Mice older than one year develop ductal pancreatic cancer. Crossbreeding these mice with p53 knockout mice dramatically accelerated tumor development. Moveover, tumors developing in these mice show frequently biallelic deletion of the Ink4a locus or LOH of SMAD4. These mice represent the first model of pancreatic adenocarcinomas with genetic alterations as well as growth characteristics similar to the human disease. Copyright (C) 2001 S. Karger AG, Basel and IAP.
引用
收藏
页码:363 / 368
页数:6
相关论文
共 67 条
[1]   MOST HUMAN CARCINOMAS OF THE EXOCRINE PANCREAS CONTAIN MUTANT C-K-RAS GENES [J].
ALMOGUERA, C ;
SHIBATA, D ;
FORRESTER, K ;
MARTIN, J ;
ARNHEIM, N ;
PERUCHO, M .
CELL, 1988, 53 (04) :549-554
[2]  
[Anonymous], PANCREAS BIOL PATHOB
[3]   ABNORMALITIES OF THE P53 TUMOR SUPPRESSOR GENE IN HUMAN PANCREATIC-CANCER [J].
BARTON, CM ;
STADDON, SL ;
HUGHES, CM ;
HALL, PA ;
OSULLIVAN, C ;
KLOPPEL, G ;
THEIS, B ;
RUSSELL, RCG ;
NEOPTOLEMOS, J ;
WILLIAMSON, RCN ;
LANE, DP ;
LEMOINE, NR .
BRITISH JOURNAL OF CANCER, 1991, 64 (06) :1076-1082
[4]   FREQUENT SOMATIC MUTATIONS AND HOMOZYGOUS DELETIONS OF THE P16 (MTS1) GENE IN PANCREATIC ADENOCARCINOMA [J].
CALDAS, C ;
HAHN, SA ;
DACOSTA, LT ;
REDSTON, MS ;
SCHUTTE, M ;
SEYMOUR, AB ;
WEINSTEIN, CL ;
HRUBAN, RH ;
YEO, CJ ;
KERN, SE .
NATURE GENETICS, 1994, 8 (01) :27-32
[5]  
CHAN FKM, 1995, MOL CELL BIOL, V15, P2682
[6]  
CLARKE AR, 1995, ONCOGENE, V11, P1913
[7]   E2F-1 ACCUMULATION BYPASSES A G(1) ARREST RESULTING FROM THE INHIBITION OF G(1) CYCLIN-DEPENDENT KINASE-ACTIVITY [J].
DEGREGORI, J ;
LEONE, G ;
OHTANI, K ;
MIRON, A ;
NEVINS, JR .
GENES & DEVELOPMENT, 1995, 9 (23) :2873-2887
[8]   MICE LACKING P21(C/P1/WAF1) UNDERGO NORMAL DEVELOPMENT, BUT ARE DEFECTIVE IN G1 CHECKPOINT CONTROL [J].
DENG, CX ;
ZHANG, PM ;
HARPER, JW ;
ELLEDGE, SJ ;
LEDER, P .
CELL, 1995, 82 (04) :675-684
[9]   MICE DEFICIENT FOR P53 ARE DEVELOPMENTALLY NORMAL BUT SUSCEPTIBLE TO SPONTANEOUS TUMORS [J].
DONEHOWER, LA ;
HARVEY, M ;
SLAGLE, BL ;
MCARTHUR, MJ ;
MONTGOMERY, CA ;
BUTEL, JS ;
BRADLEY, A .
NATURE, 1992, 356 (6366) :215-221
[10]   P53-DEPENDENT INHIBITION OF CYCLIN-DEPENDENT KINASE-ACTIVITIES IN HUMAN FIBROBLASTS DURING RADIATION-INDUCED G1 ARREST [J].
DULIC, V ;
KAUFMANN, WK ;
WILSON, SJ ;
TLSTY, TD ;
LEES, E ;
HARPER, JW ;
ELLEDGE, SJ ;
REED, SI .
CELL, 1994, 76 (06) :1013-1023