On the Poisson boundary of the relativistic Brownian motion

被引:0
作者
Angst, Jurgen [1 ]
Tardif, Camille [2 ]
机构
[1] Univ Rennes, CNRS, IRMAR, UMR 6625, F-35000 Rennes, France
[2] Sorbonne Univ, LPSM, UMR 8001, F-75252 Paris 05, France
来源
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES | 2020年 / 56卷 / 04期
关键词
Relativistic Brownian motion; Poisson boundary; Devissage method; Causal boundary; Conformal boundary; DIFFUSION; POINTS;
D O I
10.1214/20-AIHP1059
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we determine the Poisson boundary of the relativistic Brownian motion in two classes of Lorentzian manifolds, namely model manifolds of constant scalar curvature and Robertson-Walker space-times, the latter constituting a large family of curved manifolds. Our objective is two fold: on the one hand, to understand the interplay between the geometry at infinity of these manifolds and the asymptotics of random sample paths, in particular to compare the stochastic compactification given by the set of exit points of the process to classical purely geometric compactifications such as the conformal or causal boundaries. On the other hand, we want to illustrate the power of the devissage method introduced by the authors (in Seminaire de Probabilites XLVIII (2016) 199-229 Springer), method which we show to be particularly well suited in the geometric contexts under consideration here.
引用
收藏
页码:2792 / 2821
页数:30
相关论文
共 37 条
[1]   The causal boundary of product spacetimes [J].
Alana, V. ;
Flores, J. L. .
GENERAL RELATIVITY AND GRAVITATION, 2007, 39 (10) :1697-1718
[2]  
Angst J., 2009, THESIS
[3]  
Angst J., 2016, LECT NOTES MATH, V2168, P199
[4]   Asymptotic behavior of a relativistic diffusion in Robertson-Walker space-times [J].
Angst, Juergen .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01) :376-411
[5]   POISSON BOUNDARY OF A RELATIVISTIC DIFFUSION IN CURVED SPACE-TIMES: AN EXAMPLE [J].
Angst, Juergen .
ESAIM-PROBABILITY AND STATISTICS, 2015, 19 :502-514
[6]   Kinetic Brownian motion on Riemannian manifolds [J].
Angst, Juergen ;
Bailleul, Ismael ;
Tardif, Camille .
ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20
[7]  
[Anonymous], 1999, Fundamental Principles of Mathematical Sciences
[8]  
[Anonymous], 1973, CAMBRIDGE MONOGRAPHS
[9]  
Babillot Martine., 2006, PROC CIMPA TIFR SCH, P1
[10]   Poisson boundary of a relativistic diffusion [J].
Bailleul, Ismael .
PROBABILITY THEORY AND RELATED FIELDS, 2008, 141 (1-2) :283-329