A new generalization of the Banach contraction principle

被引:259
作者
Jleli, Mohamed [1 ]
Samet, Bessem [1 ]
机构
[1] King Saud Univ, Coll Sci, Dept Math, Riyadh 11451, Saudi Arabia
关键词
Banach contraction; generalized metric; fixed point; FIXED-POINT THEOREMS; CACCIOPPOLI TYPE; GAUGE SPACES; MAPPINGS;
D O I
10.1186/1029-242X-2014-38
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new generalization of the Banach contraction principle in the setting of Branciari metric spaces.
引用
收藏
页数:8
相关论文
共 31 条
[1]  
Banach S., 1922, Fund. Math., V3, P133, DOI [10.4064/fm-3-1-133-181, DOI 10.4064/FM-3-1-133-181]
[2]   On a general class of multi-valued weakly Picard mappings [J].
Berinde, Madalina ;
Berinde, Vasile .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 326 (02) :772-782
[3]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[4]  
Branciari A, 2000, PUBL MATH-DEBRECEN, V57, P31
[5]   Fixed point theorems on ordered gauge spaces with applications to nonlinear integral equations [J].
Cherichi, Meryam ;
Samet, Bessem .
FIXED POINT THEORY AND APPLICATIONS, 2012, :1-19
[6]   GENERALIZATION OF BANACHS CONTRACTION PRINCIPLE [J].
CIRIC, LB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 45 (02) :267-273
[7]   Multi-valued nonlinear contraction mappings [J].
Ciric, Ljubomir .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (7-8) :2716-2723
[8]  
Das P., 2002, Korean Journal of Mathematical Science, V9, P29
[9]   Common fixed points in generalized metric spaces [J].
Di Bari, Cristina ;
Vetro, Pasquale .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (13) :7322-7325
[10]   Fixed point results for generalized contractions in gauge spaces and applications [J].
Frigon, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (10) :2957-2965