Controlling Porosity of Anode Support in Tubular Solid Oxide Fuel Cells by Freeze Casting

被引:8
|
作者
Emley, Benjamin [1 ]
Panthi, Dhruba [2 ]
Du, Yanhai [3 ]
Yao, Yan [1 ,4 ,5 ]
机构
[1] Univ Houston, Mat Sci & Engn Program, 4726 Calhoun Rd, Houston, TX 77204 USA
[2] Kent State Univ Tuscarawas, Dept Engn Technol, 330 Univ Dr NE, New Philadelphia, OH 44663 USA
[3] Kent State Univ, Coll Aeronaut & Engn, 1400 Lefton Esplanade, Kent, OH 44242 USA
[4] Univ Houston, Dept Elect & Comp Engn, 4726 Calhoun Rd, Houston, TX 77204 USA
[5] Univ Houston, Texas Ctr Superconduct, 4726 Calhoun Rd, Houston, TX 77204 USA
关键词
freeze casting; porosity concentration; tubular SOFC; mass transport resistance; Darcy's permeability; advanced materials characterization; electrochemical storage; fuel cells; innovative material synthesis and manufacturing methods; POWER-GENERATION; FABRICATION; MICROSTRUCTURE; PERFORMANCE; DESIGN; STRENGTH; CATHODE; SOFCS;
D O I
10.1115/1.4046489
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Precise porosity control is highly desirable for improving the electrochemical performance of solid oxide fuel cells (SOFCs). Freeze casting is an established method for enabling high bulk porosity in structures and controlling pore orientation. In this study, freeze casting was used to fabricate tubular, anode-supported SOFCs with aligned and varying amounts of porosity by controlling the solids/water ratio in different casting slurries. SOFCs were prepared with a Ni/yttria and scandia stabilized zirconia (ScYSZ) anode support (AS), an anode functional layer (AFL), a ScYSZ electrolyte, a lanthanum strontium manganite (LSM)/ScYSZ cathode interlayer (CIL), and an LSM cathode. The permeability of the anode support was found to increase from 1.4 x 10(-2)to 1.8 x 10(-2)m(2)as porosity was increased from 57 to 64 vol%, while the total cell resistance decreased by 35% from 0.93 to 0.60 Ohm cm(2). When evaluated with 30 vol% H(2)as the fuel at 800 degrees C, the decrease of concentration polarization enabled an increase in electrochemical performance by 42% from 0.35 to 0.50 W/cm(2)as the porosity in the anode support was increased. Mechanical strength characterization using a three-point method showed there is a practical upper limit of the amount of porosity that can be designed into the anode support. This work paves a way for controlling porosity by freeze casting and understanding the correlation between porosity and concentration polarization losses in SOFCs.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Sequential Tape Casting of Anode-Supported Solid Oxide Fuel Cells
    Menzler, N. H.
    Malzbender, J.
    Schoderboeck, P.
    Kauert, R.
    Buchkremer, H. P.
    FUEL CELLS, 2014, 14 (01) : 96 - 106
  • [22] Effects of Reduced Firing Temperature on Anode-Supported Solid Oxide Fuel Cells
    Gao, Zhan
    Barnett, Scott A.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2014, 161 (05) : F600 - F604
  • [23] Dual-layer hollow fibres with different anode structures for micro-tubular solid oxide fuel cells
    Othman, Mohd Hafiz Dzarfan
    Droushiotis, Nicolas
    Wu, Zhentao
    Kelsall, Geoff
    Li, K.
    JOURNAL OF POWER SOURCES, 2012, 205 : 272 - 280
  • [24] Solid Oxide Fuel Cell Anode Porosity and Tortuosity Effect on the Exergy Efficiency
    Zouhri, Khalid
    Mohamed, Mohamed
    Nulph, Kayla
    Laubie, Parker
    Snyder, Luke
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2024, 2024
  • [25] Microchanneled anode supports of solid oxide fuel cells
    Dong, Dehua
    Shao, Xin
    Xie, Kui
    Hu, Xun
    Parkinson, Gordon
    Li, Chun-Zhu
    ELECTROCHEMISTRY COMMUNICATIONS, 2014, 42 : 64 - 67
  • [26] Redox-induced performance degradation of anode-supported tubular solid oxide fuel cells
    Heo, Yeon-Hyuk
    Lee, Jong-Won
    Lee, Seung-Bok
    Lim, Tak-Hyoung
    Park, Seok-Joo
    Song, Rak-Hyun
    Park, Chong-Ook
    Shin, Dong-Ryul
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (01) : 797 - 804
  • [27] Fabrication of tubular NiO/YSZ anode-support of solid oxide fuel cell by gelcasting
    Dong, Dehua
    Gao, Jianfeng
    Liu, Xingqin
    Meng, Guangyao
    JOURNAL OF POWER SOURCES, 2007, 165 (01) : 217 - 223
  • [28] Gelcasting of NiO/YSZ Tubular Anode-Supports for Solid Oxide Fuel Cells
    Nie, Lifang
    Wang, Qifen
    Liu, Juncheng
    MATERIALS AND MANUFACTURING PROCESSES, 2014, 29 (10) : 1153 - 1156
  • [29] Optimization of the Solid Oxide Fuel Cell Anode by Tape Casting
    Luo Ting
    Shi Jian
    Wang Shao-Rong
    Zhan Zhong-Liang
    JOURNAL OF INORGANIC MATERIALS, 2014, 29 (02) : 203 - 208
  • [30] Biomass carbon fueled tubular solid oxide fuel cells with molten antimony anode
    Duan, Nan-Qi
    Tan, Yuan
    Yan, Dong
    Jia, Lichao
    Chi, Bo
    Pu, Jian
    Jian, Li
    APPLIED ENERGY, 2016, 165 : 983 - 989