A settling tube to determine the terminal velocity and size distribution of fluidized nanoparticle agglomerates

被引:16
作者
de Martin, Lilian [1 ]
Sanchez-Prieto, J. [2 ]
Hernandez-Jimenez, F. [2 ]
van Ommen, J. Ruud [1 ]
机构
[1] Delft Univ Technol, Dept Chem Engn, NL-2628 BL Delft, Netherlands
[2] Univ Carlos III Madrid, Dept Thermal & Fluid Engn, Madrid 28911, Spain
基金
欧洲研究理事会;
关键词
Aggregates; Density; Fluidization; Fractal dimension; Clusters; Nanoparticles; NANO-PARTICLE FLUIDIZATION; ATOMIC LAYER DEPOSITION; FRACTAL DIMENSION; SILICA;
D O I
10.1007/s11051-013-2183-3
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
There are few techniques to measure in situ the size distribution and density of fluidized nanoparticle agglomerates. Visualization techniques, which are the most applied approach, currently have two important limitations: (1) they do not allow a continuous determination of the terminal velocity of the agglomerates, because it is necessary to stop the fluidization and (2) often, the agglomerates are tracked in very dilute zones of the bed, typically in the splash zone, where agglomerates are likely not representatives for the agglomerates in the whole bed. In this communication, we propose a sampling technique that allows to determine the size distribution and terminal velocity of fluidized agglomerates larger than similar to 20 mu m continuously, in situ, and allows to work with concentrations of agglomerates higher than other reported techniques.
引用
收藏
页数:6
相关论文
共 27 条
[1]   Particle shape: a review and new methods of characterization and classification [J].
Blott, Simon J. ;
Pye, Kenneth .
SEDIMENTOLOGY, 2008, 55 (01) :31-63
[2]   On techniques for the measurement of the mass fractal dimension of aggregates [J].
Bushell, GC ;
Yan, YD ;
Woodfield, D ;
Raper, J ;
Amal, R .
ADVANCES IN COLLOID AND INTERFACE SCIENCE, 2002, 95 (01) :1-50
[3]  
de Martin L, 2013, POWDERS GRAINS
[4]  
de Martin L, 2012, B AM PHYS SOC, V57
[5]   Electromechanics of fluidized beds of nanoparticles [J].
Espin, M. J. ;
Valverde, J. M. ;
Quintanilla, M. A. S. ;
Castellanos, A. .
PHYSICAL REVIEW E, 2009, 79 (01)
[6]  
Fidleris V., 2002, BRIT J APPL PHYS, V12, P490, DOI [10.1088/0508-3443/12/9/311, DOI 10.1088/0508-3443/12/9/311]
[7]   Atomic layer deposition of platinum clusters on titania nanoparticles at atmospheric pressure [J].
Goulas, Aristeidis ;
van Ommen, J. Ruud .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (15) :4647-4650
[8]   Nanocoating individual silica nanoparticles by atomic layer deposition in a fluidized bed reactor [J].
Hakim, LF ;
Blackson, J ;
George, SM ;
Weimer, AW .
CHEMICAL VAPOR DEPOSITION, 2005, 11 (10) :420-425
[9]   Aggregation behavior of nanoparticles in fluidized beds [J].
Hakim, LF ;
Portman, JL ;
Casper, MD ;
Weimer, AW .
POWDER TECHNOLOGY, 2005, 160 (03) :149-160
[10]   Fractal dimension of fumed silica: Comparison of light scattering and electron microscope methods [J].
Ibaseta, Nelson ;
Biscans, Beatrice .
POWDER TECHNOLOGY, 2010, 203 (02) :206-210