Optimal binary codes from trace codes over a non-chain ring

被引:28
作者
Shi, Minjia [1 ,2 ,3 ]
Liu, Yan [3 ]
Sole, Patrick [4 ]
机构
[1] Anhui Univ, Key Lab Intelligent Comp & Signal Proc, Minist Educ, 3 Feixi Rd, Hefei 230039, Anhui, Peoples R China
[2] Southeast Univ, Natl Mobile Commun Res Lab, Nanjing 210096, Jiangsu, Peoples R China
[3] Anhui Univ, Sch Math Sci, Hefei 230601, Peoples R China
[4] Univ Paris 08, CNRS LAGA, F-93526 St Denis, France
关键词
Two-weight codes; Griesmer bound; Trace codes; Secret sharing schemes;
D O I
10.1016/j.dam.2016.09.050
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct an infinite family of two-Lee-weight codes over the ring F-2 + uF(2) + vF(2) uvF(2). These codes are defined as trace codes and have the algebraic structure of abelian codes. Their Lee weight distribution is computed by using character sums. Then, taking Gray mapping, we obtain an infinite family of abelian binary two-weight codes which are shown to be optimal by application of the Griesmer bound. Moreover, an application to secret sharing schemes is given. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:176 / 181
页数:6
相关论文
共 14 条
[1]  
[Anonymous], 1978, The Theory of Error-Correcting Codes
[2]   Minimal vectors in linear codes [J].
Ashikhmin, A ;
Barg, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1998, 44 (05) :2010-2017
[3]   Cyclic codes and self-dual codes over F2+uF2 [J].
Bonnecaze, A ;
Udaya, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1999, 45 (04) :1250-1255
[4]  
Brouwer AE, 2012, UNIVERSITEXT, P1, DOI 10.1007/978-1-4614-1939-6
[5]   Ring geometries, two-weight codes, and strongly regular graphs [J].
Byrne, Eimear ;
Greferath, Marcus ;
Honold, Thomas .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 48 (01) :1-16
[6]   Properties of codes with two homogeneous weights [J].
Byrne, Eimear ;
Kiermaier, Michael ;
Sneyd, Alison .
FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (04) :711-727
[7]   THE GEOMETRY OF 2-WEIGHT CODES [J].
CALDERBANK, R ;
KANTOR, WM .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1986, 18 :97-122
[8]  
Delsarte Ph., 1972, Discrete Mathematics, V3, P47, DOI 10.1016/0012-365X(72)90024-6
[9]  
Ding CS, 2003, LECT NOTES COMPUT SC, V2731, P11
[10]   A BOUND FOR ERROR-CORRECTING CODES [J].
GRIESMER, JH .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 1960, 4 (05) :532-542