Surjective cellular automata far from the Garden of Eden

被引:0
作者
Capobianco, Silvio [1 ]
Guillon, Pierre [2 ,3 ,4 ]
Kari, Jarkko [4 ]
机构
[1] Tallinn Univ Technol, Inst Cybernet, EE-19086 Tallinn, Estonia
[2] CNRS, Marseille, France
[3] IML, Marseille, France
[4] Univ Turku, Dept Math, SF-20500 Turku, Finland
基金
芬兰科学院;
关键词
cellular automata; amenability; group theory; topological dynamics; symbolic dynamics; algorithmic randomness;
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
One of the first and most famous results of cellular automata theory, Moore's Garden-of-Eden theorem has been proven to hold if and only if the underlying group possesses the measure-theoretic properties suggested by von Neumann to be the obstacle to the Banach-Tarski paradox. We show that several other results from the literature, already known to characterize surjective cellular automata in dimension d, hold precisely when the Garden-of-Eden theorem does. We focus in particular on the balancedness theorem, which has been proven by Bartholdi to fail on amenable groups, and we measure the amount of such failure.
引用
收藏
页码:41 / 60
页数:20
相关论文
共 24 条
  • [1] [Anonymous], 1962, P 14 S APPL MATH
  • [2] [Anonymous], 2010, CELLULAR AUTOMATA GR
  • [3] Bartholdi L, 2010, J EUR MATH SOC, V12, P241
  • [4] Calude C., 2001, INFORM RANDOMNESS AL
  • [5] Randomness on full shift spaces
    Calude, CS
    Hertling, PH
    Jürgensen, H
    Weihrauch, KW
    [J]. CHAOS SOLITONS & FRACTALS, 2001, 12 (03) : 491 - 503
  • [6] Capobianco S., 2011, PROCS AUTOMATA, V2011, P233
  • [7] Amenable groups and cellular automata
    Ceccherini-Silberstein, TG
    Machì, A
    Scarabotti, F
    [J]. ANNALES DE L INSTITUT FOURIER, 1999, 49 (02) : 673 - +
  • [8] Induction and restriction of cellular automata
    Ceccherini-Silberstein, Tullio
    Coornaert, Michel
    [J]. ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2009, 29 : 371 - 380
  • [9] A MEASURE OF ASYMPTOTIC EFFICIENCY FOR TESTS OF A HYPOTHESIS BASED ON THE SUM OF OBSERVATIONS
    CHERNOFF, H
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1952, 23 (04): : 493 - 507
  • [10] Downey RG, 2010, THEOR APPL COMPUT, P401, DOI 10.1007/978-0-387-68441-3