Identification of a multifractional Gaussian process with a piece-wise constant scale function

被引:4
作者
Benassi, A [1 ]
Bertrand, P
Cohen, S
Istas, J
机构
[1] Univ Clermont Ferrand 2, F-63177 Clermont Ferrand, France
[2] Univ Versailles, Dept Math, F-78035 Versailles, France
[3] Univ Pierre Mendes France, BSHM, Dept IMSS, F-38000 Grenoble, France
来源
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE | 1999年 / 329卷 / 05期
关键词
D O I
10.1016/S0764-4442(00)88620-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We propose a Gaussian multifractional process with continuous paths, but with a piecewise constant scale function. We call it Step Fractional Brownian Motion (SFBM). Therefore, we get a model to describe phenomenon with continuous paths and abrupt changes in their nature at some times. First, we build our model and then we propose an estimator of the scale function, by detecting the change times and estimating the values of the scale function between these change times. (C) 1999 Academie des Sciences/Editions scientifiques et medicales Elsevier SAS.
引用
收藏
页码:435 / 440
页数:6
相关论文
共 11 条
[1]  
AYACHE A, 1999, FRACTALS ENG
[2]  
Basseville M., 1993, DETECTION ABRUPT CHA
[3]   Is the route of delivery a meaningful issue in twins? [J].
Benachi, A ;
Pons, JC .
CLINICAL OBSTETRICS AND GYNECOLOGY, 1998, 41 (01) :31-35
[4]   Identifying the multifractional function of a Gaussian process [J].
Benassi, A ;
Cohen, S ;
Istas, J .
STATISTICS & PROBABILITY LETTERS, 1998, 39 (04) :337-345
[5]  
Beran J, 1994, STAT LONG MEMORY PRO
[6]  
BERTRAND P, 1997, LOCAL METHOD ESTIMAT
[7]  
Csorgo M, 1997, LIMIT THEOREM CHANGE
[8]   Quadratic variations and estimation of the local Holder index of a Gaussian process [J].
Istas, J ;
Lang, G .
ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1997, 33 (04) :407-436
[9]   FRACTIONAL BROWNIAN MOTIONS FRACTIONAL NOISES AND APPLICATIONS [J].
MANDELBROT, BB ;
VANNESS, JW .
SIAM REVIEW, 1968, 10 (04) :422-+
[10]  
Meyer Y., 1990, ONDELETTES OPERATEUR