Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod

被引:211
作者
Liu, Jilei [1 ,2 ]
Poh, Chee Kok [2 ]
Zhan, Da [1 ]
Lai, Linfei [1 ]
Lim, San Hua [2 ]
Wang, Liang [1 ]
Liu, Xiaoxu [1 ]
Sahoo, Nanda Gopal [1 ]
Li, Changming [3 ]
Shen, Zexiang [1 ]
Lin, Jianyi [2 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] ASTAR, Inst Chem Engn & Sci, Singapore 627833, Singapore
[3] Nanyang Technol Univ, Dept Bioengn, Singapore 637457, Singapore
关键词
Exfoliation; Graphene; Graphite rod; Multiple; Catalysis; HIGH ELECTROCATALYTIC ACTIVITY; OXYGEN REDUCTION REACTION; LAYER GRAPHENE; INTERCALATION; ELECTRODES; FILMS; NANOPARTICLES; NANORIBBONS; ANIONS; ARRAYS;
D O I
10.1016/j.nanoen.2012.11.003
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synthesis of graphene in both high quality and quantity via economic ways is highly desirable and meaningful for practical applications. Here we report a simple, green and cost-effective multiple electrochemical exfoliation approach to high quality and high yield (nearly 50%) graphene flakes by using graphite rod from spent zinc-carbon as graphene source. The graphite rod (anode) and platinum (cathode) were placed vertically at bottom and top of the electrochemical cell, with protonic acid (i.e, H2SO4, H3PO4 or H2C2O4) aqueous solution as electrolyte. The vertical cell configuration enables multiple exfoliation process to improve both the quality and yield of graphene sheets from electrochemical exfoliation of graphite. After nitrogen doping, the exfoliated graphene flakes processes excellent electrocatalytic activity, stability and toxicity tolerance for oxygen reduction reaction in alkaline solution. (C) 2012 Elsevier Ltd. All rights reserved.
引用
收藏
页码:377 / 386
页数:10
相关论文
共 33 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   CORROSION OF GRAPHITE-INTERCALATION COMPOUNDS [J].
BECK, F ;
KROHN, H ;
ZIMMER, E .
ELECTROCHIMICA ACTA, 1986, 31 (03) :371-376
[4]   REVERSIBLE ELECTROCHEMICAL INTERCALATION OF ANIONS FROM AQUEOUS-SOLUTIONS IN POLYMER BOUND GRAPHITE-ELECTRODES [J].
BECK, F ;
KROHN, H .
SYNTHETIC METALS, 1983, 7 (3-4) :193-199
[5]   GALVANOSTATIC CYCLING OF GRAPHITE-INTERCALATION ELECTRODES WITH ANIONS IN AQUEOUS ACIDS [J].
BECK, F ;
KROHN, H ;
KAISER, W .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1982, 12 (05) :505-515
[6]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[7]   ELECTROCHEMICAL PREPARATION OF SALTS FROM WELL-ORIENTED GRAPHITE [J].
BOTTOMLEY, M ;
UBBELOHDE, AR ;
PARRY, GS ;
YOUNG, DA .
JOURNAL OF THE CHEMICAL SOCIETY, 1963, (DEC) :5674-&
[8]  
Emtsev KV, 2009, NAT MATER, V8, P203, DOI [10.1038/nmat2382, 10.1038/NMAT2382]
[9]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[10]   Nitrogen-Doped Carbon Nanotube Arrays with High Electrocatalytic Activity for Oxygen Reduction [J].
Gong, Kuanping ;
Du, Feng ;
Xia, Zhenhai ;
Durstock, Michael ;
Dai, Liming .
SCIENCE, 2009, 323 (5915) :760-764