Roughness and near-surface density of Mars from SHARAD radar echoes

被引:56
|
作者
Campbell, Bruce A. [1 ]
Putzig, Nathaniel E. [2 ]
Carter, Lynn M. [3 ]
Morgan, Gareth A. [1 ]
Phillips, Roger. J. [2 ]
Plaut, Jeffrey J. [4 ]
机构
[1] Smithsonian Inst, Ctr Earth & Planetary Studies, Washington, DC 20013 USA
[2] SW Res Inst, Boulder, CO USA
[3] NASA, Goddard Space Flight Ctr, Greenbelt, MD 20771 USA
[4] CALTECH, Jet Prop Lab, Pasadena, CA USA
关键词
Mars; radar; topography; MEDUSAE FOSSAE FORMATION; SCALE ROUGHNESS; MOLA DATA; ICE; REFLECTIVITY; TOPOGRAPHY; SCATTERING; EVOLUTION; GLACIERS; REGION;
D O I
10.1002/jgre.20050
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
We present a technique for estimating Mars topographic roughness on horizontal scales from about 10 m to 100 m using Shallow Radar (SHARAD) sounding data. Our results offer a view of surface properties complementary to Mars Orbiter Laser Altimeter (MOLA) pulse-width or baseline roughness maps and can be compared to SHARAD peak-echo properties to infer deviations from the average near-surface density. Latitudinal averaging of SHARAD-derived roughness over Arabia and Noachis Terrae shows good agreement with MOLA-derived roughness and provides clear evidence for latitude-dependent mantling deposits previously inferred from image data. In northwestern Gordii Dorsum, we find that bulk density in at least the upper few meters is significantly lower than in other units of the Medusae Fossae Formation. We observe the same behavior indicative of low near-surface density in wind-eroded crater fill in the southern highlands. Combining surface-properties analysis, subsurface sounding, and high-resolution optical images, we show that the Pavonis Mons fan-shaped deposit differs significantly from lobate debris aprons which SHARAD has shown to be ice-cored. There are no internal radar reflections from the smooth-facies portion of the Pavonis Mons fan-shaped deposit, and we suggest that these deposits are either quite thin or have little dielectric (i.e., density) contrast with the underlying terrain. Future application of these techniques can identify other low-density units across Mars, assist in the mapping of regional volatile-rich mantling units, and provide new constraints on the physical properties of the polar layered terrain.
引用
收藏
页码:436 / 450
页数:15
相关论文
共 50 条
  • [21] Dust Complex for Studying the Dust Particle Dynamics in the Near-Surface Atmosphere of Mars
    Zakharov, A. V.
    Dolnikov, G. G.
    Kuznetsov, I. A.
    Lyash, A. N.
    Esposito, F.
    Molfese, C.
    Rodriguez, I. Arruego
    Seran, E.
    Godefroy, M.
    Dubov, A. E.
    Dokuchaev, I. V.
    Knyazev, M. G.
    Bondarenko, A. V.
    Gotlib, V. M.
    Karedin, V. N.
    Shashkova, I. A.
    Abdelaal, M. E.
    Kartasheva, A. A.
    Shekhovtsova, A. V.
    Bednyakov, S. A.
    Barke, V. V.
    Yakovlev, A. V.
    Grushin, V. A.
    Bychkova, A. S.
    Popel, S. I.
    Korablev, O. I.
    Rodionov, D. S.
    Duxbury, N. S.
    Petrov, O. F.
    Lisin, E. A.
    Vasiliev, M. M.
    Poroikov, A. Yu.
    Borisov, N. D.
    Cortecchia, F.
    Saggin, B.
    Cozzolino, F.
    Brienza, D.
    Scaccabarozzi, D.
    Mongelluzzo, G.
    Franzese, G.
    Porto, C.
    Rico, A. Martin Ortega
    Santiuste, N. Andres
    de Mingo, J. R.
    Popa, C. I.
    Silvestro, S.
    Brucato, J. R.
    SOLAR SYSTEM RESEARCH, 2022, 56 (06) : 351 - 368
  • [22] Near-surface atmospheric water vapor enhancement at the Mars Phoenix lander site
    Tamppari, Leslie K.
    Lemmon, Mark T.
    ICARUS, 2020, 343
  • [23] A new numerical model of the HF antenna of the Mars Reconnaissance Orbiter's (MRO) Shallow Radar (SHARAD) and first results from a test at a roll
    DiCarlofelice, Alessandro
    Tognolatti, Piero
    Bernardini, Fabrizio
    Croci, Renato
    Morgan, Gareth A.
    Perry, Matthew R.
    Putzig, Nathaniel E.
    ICARUS, 2024, 419
  • [24] Revisiting the Phoenix TECP data: Implications for regolith control of near-surface humidity on Mars
    Rivera-Valentin, Edgard G.
    Chevrier, Vincent F.
    ICARUS, 2015, 253 : 156 - 158
  • [25] Using of standard marine radar for determination of a water surface and an atmosphere near-surface layer parameters
    Bogatov, Nikolay A.
    Bakhanov, Victor V.
    Ermoshkin, Aleksei V.
    Kazakov, Vasily I.
    Kemarskaya, Olga N.
    Titov, Victor I.
    Troitskaya, Yulia I.
    REMOTE SENSING OF THE OCEAN, SEA ICE, COASTAL WATERS, AND LARGE WATER REGIONS 2014, 2014, 9240
  • [26] Global seasonal variations of the near-surface relative humidity levels on present-day Mars
    Pal, Bernadett
    Kereszturi, Akos
    Forget, Francois
    Smith, Michael D.
    ICARUS, 2019, 333 : 481 - 495
  • [27] Formation and degradation of chaotic terrain in the Galaxias regions of Mars: implications for near-surface storage of ice
    Gallagher, Colman
    Balme, Matt
    Soare, Richard
    Conway, Susan J.
    ICARUS, 2018, 309 : 69 - 83
  • [28] A RADAR SUITE FOR ICE SHEET ACCUMULATION MEASUREMENTS AND NEAR-SURFACE INTERNAL LAYER MAPPING
    Lewis, Cameron
    Patel, Aqsa
    Owen, Heather
    Rodriguez-Morales, Fernando
    Leuschen, Carl
    Seguin, Sarah A.
    Ledford, John
    Player, Kevin
    Gogineni, Sivaprasad
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 3866 - 3869
  • [29] Near-Surface Oceanic Kinetic Energy Distributions From Drifter Observations and Numerical Models
    Arbic, Brian K.
    Elipot, Shane
    Brasch, Jonathan M.
    Menemenlis, Dimitris
    Ponte, Aurelien L.
    Shriver, Jay F.
    Yu, Xiaolong
    Zaron, Edward D.
    Alford, Matthew H.
    Buijsman, Maarten C.
    Abernathey, Ryan
    Garcia, Daniel
    Guan, Lingxiao
    Martin, Paige E.
    Nelson, Arin D.
    JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2022, 127 (10)
  • [30] The near-surface current velocity determined from image sequences of the sea surface
    Senet, CM
    Seemann, J
    Ziemer, F
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (03): : 492 - 505