The adaptive finite element method based on multi-scale discretizations for eigenvalue problems

被引:15
作者
Li, Hao [1 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue; Finite element; Multi-scale discretizations; A posterior error; Adaptive algorithms; APPROXIMATIONS; CONVERGENCE; COMPUTATION; ALGORITHMS; COMPLEXITY;
D O I
10.1016/j.camwa.2013.01.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, adaptive finite element methods for differential operator eigenvalue problems are discussed. For multi-scale discretization schemes based on Rayleigh quotient iteration (see Scheme 3 in [Y. Yang, H. Bi, A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal. 49 (2011) 1602-1624]), a reliable and efficient a posteriori error indicator is given, in addition, a new adaptive algorithm based on the multi-scale discretizations is proposed, and we apply the algorithm to the Schrodinger equation for hydrogen atoms. The algorithm is performed under the package of Chen, and satisfactory numerical results are obtained. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1086 / 1102
页数:17
相关论文
共 37 条
[11]   Three-scale finite element discretizations for quantum eigenvalue problems [J].
Dai, Xiaoying ;
Zhou, Aihui .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2008, 46 (01) :295-324
[12]   A convergent adaptive algorithm for Poisson's equation [J].
Dorfler, W .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1996, 33 (03) :1106-1124
[13]  
Gong X., 2008, J COMPUT MATH, V26, P297
[14]  
Grisvard P., 1985, Elliptic Problems in Nonsmooth Domains, V24
[15]   A posteriori error control for finite element approximations of elliptic eigenvalue problems [J].
Heuveline, V ;
Rannacher, R .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) :107-138
[16]  
Hu J., 2011, ARXIV11121145V1MATHN
[17]   THE BEST L2 NORM ERROR ESTIMATE OF LOWER ORDER FINITE ELEMENT METHODS FOR THE FOURTH ORDER PROBLEM [J].
Hu, Jun ;
Shi, Zhong-Ci .
JOURNAL OF COMPUTATIONAL MATHEMATICS, 2012, 30 (05) :449-460
[18]   ACCELERATION OF A TWO-GRID METHOD FOR EIGENVALUE PROBLEMS [J].
Hu, Xiaozhe ;
Cheng, Xiaoliang .
MATHEMATICS OF COMPUTATION, 2011, 80 (275) :1287-1301
[19]   Adaptive finite element algorithms for eigenvalue problems based on local averaging type a posteriori error estimates [J].
Mao, Dong ;
Shen, Lihua ;
Zhou, Aihui .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 2006, 25 (1-3) :135-160
[20]   Adaptive computation of smallest eigenvalues of self-adjoint elliptic partial differential equations [J].
Mehrmann, Volker ;
Miedlar, Agnieszka .
NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2011, 18 (03) :387-409