The adaptive finite element method based on multi-scale discretizations for eigenvalue problems

被引:15
作者
Li, Hao [1 ]
Yang, Yidu [1 ]
机构
[1] Guizhou Normal Univ, Sch Math & Comp Sci, Guiyang 550001, Peoples R China
基金
中国国家自然科学基金;
关键词
Eigenvalue; Finite element; Multi-scale discretizations; A posterior error; Adaptive algorithms; APPROXIMATIONS; CONVERGENCE; COMPUTATION; ALGORITHMS; COMPLEXITY;
D O I
10.1016/j.camwa.2013.01.043
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, adaptive finite element methods for differential operator eigenvalue problems are discussed. For multi-scale discretization schemes based on Rayleigh quotient iteration (see Scheme 3 in [Y. Yang, H. Bi, A two-grid discretization scheme based on shifted-inverse power method, SIAM J. Numer. Anal. 49 (2011) 1602-1624]), a reliable and efficient a posteriori error indicator is given, in addition, a new adaptive algorithm based on the multi-scale discretizations is proposed, and we apply the algorithm to the Schrodinger equation for hydrogen atoms. The algorithm is performed under the package of Chen, and satisfactory numerical results are obtained. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1086 / 1102
页数:17
相关论文
共 37 条
[1]  
[Anonymous], RIVIEW POSTERIORI ER
[2]  
[Anonymous], 1991, Handbk Numer Anal
[3]   ERROR ESTIMATES FOR ADAPTIVE FINITE-ELEMENT COMPUTATIONS [J].
BABUSKA, I ;
RHEINBOLDT, WC .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1978, 15 (04) :736-754
[4]  
CASCON JM, 2007, 0092007 U AUGSB
[5]  
CHATELIN F, 1983, Spectral Approximations of Linear Operators
[6]  
Chen HJ, 2009, J COMPUT MATH, V27, P315
[7]  
Chen L, 2008, IFEM INNOVATIVE FINI
[8]  
Ciarlet P.G., 1991, HDB NUMERICAL ANAL, V2, P21
[9]   Adaptive eigenvalue computation: complexity estimates [J].
Dahmen, Wolfgang ;
Rohwedder, Thorsten ;
Schneider, Reinhold ;
Zeiser, Andreas .
NUMERISCHE MATHEMATIK, 2008, 110 (03) :277-312
[10]   Convergence and optimal complexity of adaptive finite element eigenvalue computations [J].
Dai, Xiaoying ;
Xu, Jinchao ;
Zhou, Aihui .
NUMERISCHE MATHEMATIK, 2008, 110 (03) :313-355