A comparative techno-economic assessment of fast pyrolysis, hydrothermal liquefaction, and intermediate pyrolysis of municipal solid waste for liquid transportation fuels production

被引:25
|
作者
Rahman, Wasel-Ur [1 ]
Patel, Madhumita [1 ,2 ]
Kurian, Vinoj [1 ]
Kumar, Amit [1 ]
机构
[1] Univ Alberta, Dept Mech Engn, 10-263 Donadeo Innovat Ctr Engn, Edmonton, AB T6G 1H9, Canada
[2] Indian Sch Mines, Indian Inst Technol, Dept Environm Sci & Engn, Dhanbad, Bihar, India
关键词
Intermediate pyrolysis; Transportation fuels; Comparative techno-economic model; Hydrothermal liquefaction; Fast pyrolysis; Decentralized; LIFE-CYCLE ASSESSMENT; BIOMASS FAST PYROLYSIS; BIO-OIL PRODUCTION; COMBINED HEAT; JET FUEL; THERMOCHEMICAL CONVERSION; UNCERTAINTY ANALYSIS; SUSTAINABLE LIQUID; MANAGEMENT-SYSTEMS; ENERGY RECOVERY;
D O I
10.1016/j.enconman.2022.115877
中图分类号
O414.1 [热力学];
学科分类号
摘要
The conversion of municipal solid waste (MSW) to transportation fuels can be an attractive route to reduce greenhouse gas emissions from the transportation and municipal sectors. Thermochemical conversion routes like hydrothermal liquefaction (HTL), fast pyrolysis (FP), and intermediate pyrolysis (IP) have been shown to be adept at converting organic dominant MSW into bio-crude or bio-oil. However, to produce compatible transportation grade fuels, it is necessary to upgrade the intermediate product (bio-crude or bio-oil) from all the processes, the extent of which differs depending on the process. Moreover, depending on the conversion technique, the production configuration can be either centralized or decentralized. In a centralized system, feed is transported to a facility to produce the intermediate and upgrade it (on-site upgrading), while in a decentralized system, the intermediate is produced elsewhere and transported to an upgrading facility (off-site upgrading).. Four scenarios were developed and modeled to compare the cost of production of gasoline, diesel and jet fuel from bio-crudes produced from HTL, FP, and IP.. The scenarios are: 1) a centralized HTL plant (C-HTL); 2000 dry t per day; on-site upgrading, 2) a centralized FP plant (C-FP); 2000 dry t per day; on-site upgrading, 3) a decentralized FP plant (D-FP); 50 dry t per day; off-site upgrading, and 4) a decentralized IP plant; 12 dry t per day; off-site upgrading.. Jet fuel was the primary fuel for comparison and the production costs were calculated to be $ 0.72, $ 0.85, $ 1.04, and $ 0.81 per liter for the C-HTL, the C-FP, the D-FP, and the D-IP plants, respectively. Secondary products (gasoline and diesel) can be produced alongside in cost ranges of $ 0.97 - $ 1.40 per liter and $ 1.02 - $ 1.47 per liter, respectively. The information conveyed in this study helps to identify the potential of thermochemical conversion processes to produce transportation fuels at competitive prices. The critical barriers to adopt such large-scale production processes and the opportunities of small-scale decentralized production are also mentioned. The outcomes of this study can be used to direct research and investment to address the major roadblocks that are slowing the extensive development of these technologies.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments
    Deuber, Raquel de Souza
    Bressanin, Jessica Marcon
    Fernandes, Daniel Santos
    Guimaraes, Henrique Real
    Chagas, Mateus Ferreira
    Bonomi, Antonio
    Fregolente, Leonardo Vasconcelos
    Watanabe, Marcos Djun Barbosa
    ENERGIES, 2023, 16 (06)
  • [32] Comparative study of biofuel production based on spent coffee grounds transesterification and pyrolysis: Process simulation, techno-economic, and life cycle assessment
    Gu, Jiwon
    Lee, Aejin
    Choe, Changgwon
    Lim, Hankwon
    JOURNAL OF CLEANER PRODUCTION, 2023, 428
  • [33] Techno-economic Assessment of Integrated Hydrothermal Liquefaction and Combined Heat and Power Production from Lignocellulose Residues
    Magdeldin, Mohamed
    Kohl, Thomas
    Jarvinen, Mika
    JOURNAL OF SUSTAINABLE DEVELOPMENT OF ENERGY WATER AND ENVIRONMENT SYSTEMS-JSDEWES, 2018, 6 (01): : 89 - 113
  • [34] Techno-economic assessment of gasoline production from Fe-assisted lignocellulosic biomass hydrothermal liquefaction process with minimized waste stream
    Mousavi, Seyedmohammad
    Damizia, Martina
    Hamidi, Roya
    De Filippis, Paolo
    de Caprariis, Benedetta
    ENERGY CONVERSION AND MANAGEMENT, 2024, 320
  • [35] Techno-economic review of pyrolysis and gasification plants for thermochemical recovery of plastic waste and economic viability assessment of small-scale implementation
    Tomic, Tihomir
    Slatina, Iva
    Schneider, Daniel R.
    CLEAN TECHNOLOGIES AND ENVIRONMENTAL POLICY, 2024, 26 (01) : 171 - 195
  • [36] Techno-economic analysis of liquid fuel production from woody biomass via hydrothermal liquefaction (HTL) and upgrading
    Zhu, Yunhua
    Biddy, Mary J.
    Jones, Susanne B.
    Elliott, Douglas C.
    Schmidt, Andrew J.
    APPLIED ENERGY, 2014, 129 : 384 - 394
  • [37] Development of a mobile, pilot scale hydrothermal liquefaction reactor: Food waste conversion product analysis and techno-economic assessment
    Aierzhati, Aersi
    Watson, Jamison
    Si, Buchun
    Stablein, Michael
    Wang, Tengfei
    Zhang, Yuanhui
    ENERGY CONVERSION AND MANAGEMENT-X, 2021, 10
  • [38] Comparative techno-economic analysis of algal biofuel production via hydrothermal liquefaction: One stage versus two stages
    Gu, Xiangyu
    Yu, Liang
    Pang, Na
    Martinez-Fernandez, Jose Salomon
    Fu, Xiao
    Chen, Shulin
    APPLIED ENERGY, 2020, 259
  • [39] Simulation and techno-economic assessment of bio-methanol production from pine biomass, biochar and pyrolysis oil
    Zhang, Zhihai
    Delcroix, Benoit
    Rezazgui, Olivier
    Mangin, Patrice
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 44
  • [40] Techno-economic analysis and environmental impact assessment of energy recovery from Municipal Solid Waste (MSW) in Brazil
    Vicente Leme, Marcio Montagnana
    Rocha, Mateus Henrique
    Silva Lora, Electo Eduardo
    Venturini, Osvaldo Jose
    Lopes, Bruno Marciano
    Ferreira, Claudio Homero
    RESOURCES CONSERVATION AND RECYCLING, 2014, 87 : 8 - 20