Hardy's inequality for W1,p0-functions on Riemannian manifolds

被引:14
作者
Miklyukov, VM
Vuorinen, MK
机构
[1] Volgograd State Univ, Dept Math, Volgograd 400062, Russia
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
[3] Univ Helsinki, Dept Math, FIN-00014 Helsinki, Finland
关键词
D O I
10.1090/S0002-9939-99-04849-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that for every Riemannian manifold chi with the isoperimetric profile of particular type there holds an inequality of Hardy type for functions of the class W-0(1,p)(chi). We also study manifolds satisfying Hardy's inequality and, in particular, we establish an estimate for the rate of growth of the weighted volume of the noncompact part of such a manifold.
引用
收藏
页码:2745 / 2754
页数:10
相关论文
共 19 条
[1]   On the theory of superimposed surfaces [J].
Ahlfors, L .
ACTA MATHEMATICA, 1935, 65 (01) :157-194
[2]   ON STRONG BARRIERS AND AN INEQUALITY OF HARDY FOR DOMAINS IN RN [J].
ANCONA, A .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1986, 34 :274-290
[3]   THE CONVEXITY OF A DOMAIN AND THE SUPERHARMONICITY OF THE SIGNED DISTANCE FUNCTION [J].
ARMITAGE, DH ;
KURAN, U .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1985, 93 (04) :598-600
[4]   A new isoperimetric comparison theorem for surfaces of variable curvature [J].
Benjamini, I ;
Cao, JG .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (02) :359-396
[5]  
BOBKOV SG, 1997, MEM AM MATH SOC, V616, P1
[6]  
BURAGO YD, 1980, GEOMETRIC INEQUALITI
[7]  
CROKE CB, 1980, ANN SCI ECOLE NORM S, V13, P419
[8]  
Dubrovin B. A., 1979, Modern Geometry
[9]   NORMAL AND INTEGRAL CURRENTS [J].
FEDERER, H ;
FLEMING, WH .
ANNALS OF MATHEMATICS, 1960, 72 (03) :458-520
[10]  
Hardy G.H., 1952, INEQUALITIES