Resonant Aluminum Nanodisk Array for Enhanced Tunable Broadband Light Trapping in Ultrathin Bulk Heterojunction Organic Photovoltaic Devices

被引:21
作者
Wu, Bo [1 ]
Liu, Xinfeng [1 ]
Oo, Than Zaw [2 ]
Xing, Guichuan [1 ]
Mathews, Nripan [2 ]
Sum, Tze Chien [1 ]
机构
[1] Nanyang Technol Univ, Sch Phys & Math Sci, Div Phys & Appl Phys, Singapore 637371, Singapore
[2] Nanyang Technol Univ, Mat Technol Div, Sch Mat Sci & Engn, Singapore 639798, Singapore
基金
新加坡国家研究基金会;
关键词
Organic photovoltaic device; Aluminum; Plasmonic cavity resonance; Enhancement; Ultrathin; Cost-effective; POLYMER SOLAR-CELLS; ABSORPTION ENHANCEMENT; NANOPARTICLES; EFFICIENCY; AU;
D O I
10.1007/s11468-012-9358-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A cost-effective approach to enhancing broadband light trapping in ultrathin bulk heterojunction organic photovoltaic (OPV) devices is proposed. This is achieved by simply inserting an array of Al nanodisks at the interface of the ITO anode and the organic active layer; forming circular plasmonic nanopatch cavities (between the nanodisks and the Al cathode) that sandwich the active layer. Through interactions between the surface plasmon polaritons localized at the nanodisk and the cathode, a tunable broadband resonance peak spanning 450-700 nm in the scattering cross-section spectrum is formed, thereby enhancing the electromagnetic field in the active layer. Compared to an OPV device with a 60-nm-thick PCPDTBT/PC60BM layer, our numerical simulations reveal that integrated absorption enhancements of up to 40 % can be achieved in an equivalent device integrated with an array of nanodisks with a diameter of 100 nm and a periodicity of 250 nm. From the analysis of the structure-performance relationships, implications for the design of these nanopatch cavities for light harvesting in ultrathin OPV devices are discussed.
引用
收藏
页码:677 / 684
页数:8
相关论文
共 37 条
[1]   Broadband optical absorption enhancement through coherent light trapping in thin-film photovoltaic cells [J].
Agrawal, Mukul ;
Peumans, Peter .
OPTICS EXPRESS, 2008, 16 (08) :5385-5396
[2]   Design of Plasmonic Nanoparticles for Efficient Subwavelength Light Trapping in Thin-Film Solar Cells [J].
Akimov, Yuriy A. ;
Koh, Wee Shing .
PLASMONICS, 2011, 6 (01) :155-161
[3]   Cavity-enhanced localized plasmon resonance sensing [J].
Ameling, Ralf ;
Langguth, Lutz ;
Hentschel, Mario ;
Mesch, Martin ;
Braun, Paul V. ;
Giessen, Harald .
APPLIED PHYSICS LETTERS, 2010, 97 (25)
[4]  
Amit ML, 2011, SEMICOND SCI TECH, V26
[5]  
Atwater HA, 2010, NAT MATER, V9, P205, DOI [10.1038/nmat2629, 10.1038/NMAT2629]
[6]  
Balanis C. A., 2011, MODERN ANTENNA HDB
[7]   Resonant SPP modes supported by discrete metal nanoparticles on high-index substrates [J].
Beck, F. J. ;
Verhagen, E. ;
Mokkapati, S. ;
Polman, A. ;
Catchpole, K. R. .
OPTICS EXPRESS, 2011, 19 (06) :A146-A156
[8]   Tunable light trapping for solar cells using localized surface plasmons [J].
Beck, F. J. ;
Polman, A. ;
Catchpole, K. R. .
JOURNAL OF APPLIED PHYSICS, 2009, 105 (11)
[9]   Design principles for particle plasmon enhanced solar cells [J].
Catchpole, K. R. ;
Polman, A. .
APPLIED PHYSICS LETTERS, 2008, 93 (19)
[10]   Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence [J].
Dennler, Gilles ;
Forberich, Karen ;
Ameri, Tayebeh ;
Waldauf, Christoph ;
Denk, Patrick ;
Brabec, Christoph J. ;
Hingerl, Kurt ;
Heeger, Alan J. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (12)