Bifurcational mechanisms of synchronization of a resonant limit cycle on a two-dimensional torus

被引:43
作者
Anishchenko, V. [1 ]
Nikolaev, S. [1 ]
Kurths, J. [2 ]
机构
[1] Saratov NG Chernyshevskii State Univ, Dept Phys, Inst Nonlinear Dynam, Saratov 410012, Russia
[2] Univ Potsdam, Inst Phys, Grp Nonlinear Dynam, D-14415 Potsdam, Germany
关键词
D O I
10.1063/1.2949929
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study synchronization of a resonant limit cycle on a two-dimensional torus with an external harmonic signal. The regime of the resonant limit cycle is realized in a system of two coupled Van der Pol oscillators; we consider the resonances 1:1 and 1:3. We analyze the influence of coupling strength between the oscillators. We show that the resonant limit cycle can be generally synchronized on the torus through the resonance destruction followed by the locking of one and then another one of the basic frequencies. We consider the bifurcational mechanism of the synchronization effect. (C) 2008 American Institute of Physics.
引用
收藏
页数:7
相关论文
共 8 条
[1]   Winding number locking on a two-dimensional torus: Synchronization of quasiperiodic motions [J].
Anishchenko, V. ;
Nikolaev, S. ;
Kurths, J. .
PHYSICAL REVIEW E, 2006, 73 (05)
[2]   Peculiarities of synchronization of a resonant limit cycle on a two-dimensional torus [J].
Anishchenko, V. ;
Nikolaev, S. ;
Kurths, J. .
PHYSICAL REVIEW E, 2007, 76 (04)
[3]  
FRANCESHINI V, 1983, PHYSICA D, V3, P285
[4]  
[Гонченко Сергей Владимирович Gonchenko S.V.], 2006, [Нелинейная динамика, Russian Journal of Nonlinear Dynamics, Nelineinaya dinamika], V2, P3
[5]  
KANEKO K, 1986, COLLAPSE TORI GENESI
[6]  
Moon F.C, 1987, Chaotic Vibrations
[7]   OCCURRENCE OF STRANGE AXIOM A ATTRACTORS NEAR QUASI PERIODIC FLOWS ON TM, M IS GREATER THAN OR EQUAL TO 3 [J].
NEWHOUSE, S ;
RUELLE, D ;
TAKENS, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 64 (01) :35-40
[8]   NATURE OF TURBULENCE [J].
RUELLE, D ;
TAKENS, F .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1971, 20 (03) :167-&