Boundedness of maximal operators and Sobolev's theorem for non-homogeneous central Morrey spaces of variable exponent

被引:1
作者
Mizuta, Yoshihiro [1 ]
Ohno, Takao [2 ]
Shimomura, Tetsu [3 ]
机构
[1] Hiroshima Inst Technol, Dept Mech Syst Engn, Saeki Ku, Hiroshima 7315193, Japan
[2] Oita Univ, Fac Educ & Welf Sci, Oita 8701192, Japan
[3] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
基金
日本学术振兴会;
关键词
Maximal operator; non-homogeneous central Morrey spaces of variable exponent; Riesz potentials; Sobolev's theorem; Sobolev's inequality; Trudinger's exponential integrability; HARDY-SPACES;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim in this paper is to deal with the boundedness of the Hardy-Littlewood maximal operator in non-homogeneous central Morrey spaces of variable exponent. Further, we give Sobolev's inequality and Trudinger's exponential integrability for generalized Riesz potentials.
引用
收藏
页码:185 / 201
页数:17
相关论文
共 22 条
  • [1] Adams DR, 1996, FUNCTION SPACES POTE
  • [2] Maximal, potential and singular type operators on Herz spaces with variable exponents
    Almeida, Alexandre
    Drihem, Douadi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 394 (02) : 781 - 795
  • [3] Alvarez J., 2000, Collectanea Mathematica, V51, P1
  • [4] Beurling A., 1964, Ann. Inst. Fourier, V14, P1, DOI DOI 10.5802/AIF.172
  • [5] BOJARSKI B, 1993, STUD MATH, V106, P77
  • [6] Cruz-Uribe D, 2004, ANN ACAD SCI FENN-M, V29, P247
  • [7] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [8] Feichtinger H. G., 1984, S MATH, V29, P267
  • [9] λ-central BMO estimates for commutators of singular integral operators with rough kernels
    Fu, Zun Wei
    Lin, Yan
    Lu, Shan Zhen
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (03) : 373 - 386
  • [10] GARCIACUERVA J, 1994, P LOND MATH SOC, V69, P605