A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy

被引:79
|
作者
Santos, Sergio [1 ,2 ,3 ]
Guang, Li [3 ]
Souier, Tewfik [3 ]
Gadelrab, Karim [3 ]
Chiesa, Matteo [3 ]
Thomson, Neil H. [1 ,2 ]
机构
[1] Univ Leeds, Dept Oral Biol, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[3] Masdar Inst Sci & Technol, Lab Energy & Nanosci, Abu Dhabi, U Arab Emirates
关键词
VIBRATING TIP; ENERGY-DISSIPATION; MICROLEVER SYSTEM; BEHAVIOR; CONTACT; CALIBRATION; CONTRAST;
D O I
10.1063/1.4704376
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704376]
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Effects of tip-nanotube interactions on atomic force microscopy imaging of carbon nanotubes
    Alizadegan, Rouholla
    Liao, Albert D.
    Xiong, Feng
    Pop, Eric
    Hsia, K. Jimmy
    NANO RESEARCH, 2012, 5 (04) : 235 - 247
  • [32] Atomic Force Microscopy Simulation by MD/Continuum Coupling Method
    Senda, Yasuhiro
    Imahashi, Nobuyuki
    Shimamura, Shuji
    Blomqvist, Janne
    Nieminen, Risto
    INTEGRATED FERROELECTRICS, 2014, 155 (01) : 33 - 38
  • [33] Elastic modulus of ultrathin polymer films characterized by atomic force microscopy: The role of probe radius
    Nguyen, Hung K.
    Fujinami, So
    Nakajima, Ken
    POLYMER, 2016, 87 : 114 - 122
  • [34] How to measure energy dissipation in dynamic mode atomic force microscopy
    Anczykowski, B
    Gotsmann, B
    Fuchs, H
    Cleveland, JP
    Elings, VB
    APPLIED SURFACE SCIENCE, 1999, 140 (3-4) : 376 - 382
  • [35] The role of the tip in non-contact atomic force microscopy dissipation images of ionic surfaces
    Canova, F. Federici
    Foster, Adam S.
    NANOTECHNOLOGY, 2011, 22 (04)
  • [36] Daniell method for power spectral density estimation in atomic force microscopy
    Labuda, Aleksander
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (03)
  • [37] DETERMINATION OF THE LOCAL DIELECTRIC CONSTANT OF INSULATING MATERIALS BY AN ATOMIC FORCE MICROSCOPY TECHNIQUE
    Moldovan, Antoniu
    Buzatu, Daniela
    Enachescu, Marius
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2016, 78 (01): : 257 - 264
  • [38] Quantifying nanoscale forces using machine learning in dynamic atomic force microscopy
    Chandrashekar, Abhilash
    Belardinelli, Pierpaolo
    Bessa, Miguel A.
    Staufer, Urs
    Alijani, Farbod
    NANOSCALE ADVANCES, 2022, 4 (09): : 2134 - 2143
  • [39] Shortcomings of the Derjaguin-Muller-Toporov model in dynamic atomic force microscopy
    Theiler, Pius M.
    Ritz, Christian
    Stemmer, Andreas
    JOURNAL OF APPLIED PHYSICS, 2021, 130 (24)
  • [40] Dynamic atomic force microscopy operation based on high flexure modes of the cantilever
    Girard, P.
    Ramonda, M.
    Arinero, R.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2006, 77 (09)