A method to provide rapid in situ determination of tip radius in dynamic atomic force microscopy

被引:79
|
作者
Santos, Sergio [1 ,2 ,3 ]
Guang, Li [3 ]
Souier, Tewfik [3 ]
Gadelrab, Karim [3 ]
Chiesa, Matteo [3 ]
Thomson, Neil H. [1 ,2 ]
机构
[1] Univ Leeds, Dept Oral Biol, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, Sch Phys & Astron, Leeds LS2 9JT, W Yorkshire, England
[3] Masdar Inst Sci & Technol, Lab Energy & Nanosci, Abu Dhabi, U Arab Emirates
关键词
VIBRATING TIP; ENERGY-DISSIPATION; MICROLEVER SYSTEM; BEHAVIOR; CONTACT; CALIBRATION; CONTRAST;
D O I
10.1063/1.4704376
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We provide a method to characterize the tip radius of an atomic force microscopy in situ by monitoring the dynamics of the cantilever in ambient conditions. The key concept is that the value of free amplitude for which transitions from the attractive to repulsive force regimes are observed, strongly depends on the curvature of the tip. In practice, the smaller the value of free amplitude required to observe a transition, the sharper the tip. This general behavior is remarkably independent of the properties of the sample and cantilever characteristics and shows the strong dependence of the transitions on the tip radius. The main advantage of this method is rapid in situ characterization. Rapid in situ characterization enables one to continuously monitor the tip size during experiments. Further, we show how to reproducibly shape the tip from a given initial size to any chosen larger size. This approach combined with the in situ tip size monitoring enables quantitative comparison of materials measurements between samples. These methods are set to allow quantitative data acquisition and make direct data comparison readily available in the community. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4704376]
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Energy dissipation and dynamic response of an amplitude-modulation atomic-force microscopy subjected to a tip-sample viscous force
    Lin, Shueei Muh
    ULTRAMICROSCOPY, 2007, 107 (2-3) : 245 - 253
  • [22] Nanostructural origins of irreversible deformation in bone revealed by an in situ atomic force microscopy study
    Qian, Tianbao
    Teng, Lijing
    Zhou, Yongji
    Zhang, Minghao
    Hu, Zuquan
    Chen, Xiaofeng
    Hang, Fei
    NANO RESEARCH, 2022, 15 (08) : 7329 - 7341
  • [23] An alternative method to determining optical lever sensitivity in atomic force microscopy without tip-sample contact
    Tourek, Christopher J.
    Sundararajan, Sriram
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (07)
  • [24] Parametrization of atomic force microscopy tip shape models for quantitative nanomechanical measurements
    Belikov, Sergey
    Erina, Natalia
    Huang, Lin
    Su, Chanmin
    Prater, Craig
    Magonov, Sergei
    Ginzburg, Valeriy
    McIntyre, Bob
    Lakrout, Hamed
    Meyers, Gregory
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2009, 27 (02): : 984 - 992
  • [25] Three-Dimensional Atomic Force Microscopy: Interaction Force Vector by Direct Observation of Tip Trajectory
    Sigdel, Krishna P.
    Grayer, Justin S.
    King, Gavin M.
    NANO LETTERS, 2013, 13 (11) : 5106 - 5111
  • [26] Atomic force microscopy spring constant determination in viscous liquids
    Pirzer, Tobias
    Hugel, Thorsten
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (03)
  • [27] Transverse viscoelastic properties of pulp fibers investigated with an atomic force microscopy method
    Czibula, Caterina
    Ganser, Christian
    Seidlhofer, Tristan
    Teichert, Christian
    Hirn, Ulrich
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (17) : 11448 - 11461
  • [28] Functional dependence of resonant harmonics on nanomechanical parameters in dynamic mode atomic force microscopy
    Gramazio, Federico
    Lorenzoni, Matteo
    Perez-Murano, Francesc
    Trinidad, Enrique Rull
    Staufer, Urs
    Fraxedas, Jordi
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2017, 8 : 883 - 891
  • [29] Practical Method to Limit Tip-Sample Contact Stress and Prevent Wear in Amplitude Modulation Atomic Force Microscopy
    Vahdat, Vahid
    Carpick, Robert W.
    ACS NANO, 2013, 7 (11) : 9836 - 9850
  • [30] Corrected direct force balance method for atomic force microscopy lateral force calibration
    Asay, David B.
    Hsiao, Erik
    Kim, Seong H.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (06)