New estimation in mixture of experts models using the Pearson type VII distribution

被引:2
作者
Yin, Junhui [1 ]
Wu, Liucang [1 ]
Lu, Hanchi [1 ]
Dai, Lin [1 ]
机构
[1] Kunming Univ Sci & Technol, Fac Sci, Kunming 650093, Yunnan, Peoples R China
基金
中国国家自然科学基金;
关键词
EM algorithm; mixture of experts; Pearson type VII distribution; robust estimation; ROBUST MIXTURE; IDENTIFIABILITY; REGRESSION;
D O I
10.1080/03610918.2018.1485943
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Assuming that the error terms follow a Pearson type VII distribution, we propose a new estimation in mixture of experts models by adding an norm of the regression coefficients of the mixing proportions to the log-likelihood function. This l(2)-penalized maximum likelihood estimator is a root-n consistent estimator of the true parameter vector, and its finite sample behaviour is better than that of the ordinary maximum likelihood estimator. An efficient EM algorithm is suggested for the inference, and the methodology is illustrated through some simulation and comparison studies. An application of the proposed method to a data set is described.
引用
收藏
页码:472 / 483
页数:12
相关论文
共 20 条
[1]  
Bunea F, 2008, ELECTRON J STAT, V17, P1871
[2]   Robust mixture of experts modeling using the t distribution [J].
Chamroukhi, F. .
NEURAL NETWORKS, 2016, 79 :20-36
[3]   MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM [J].
DEMPSTER, AP ;
LAIRD, NM ;
RUBIN, DB .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01) :1-38
[4]  
Hansen J, 2001, J GEOPHYS RES-ATMOS, V106, P23947, DOI 10.1029/2001JD000354
[5]   Identifiability of models for clusterwise linear regression [J].
Hennig, C .
JOURNAL OF CLASSIFICATION, 2000, 17 (02) :273-296
[6]   Semiparametric mixtures of regressions [J].
Hunter, David R. ;
Young, Derek S. .
JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) :19-38
[7]   Adaptive Mixtures of Local Experts [J].
Jacobs, Robert A. ;
Jordan, Michael I. ;
Nowlan, Steven J. ;
Hinton, Geoffrey E. .
NEURAL COMPUTATION, 1991, 3 (01) :79-87
[8]   On the identifiability of mixtures-of-experts [J].
Jiang, W ;
Tanner, MA .
NEURAL NETWORKS, 1999, 12 (09) :1253-1258
[9]   HIERARCHICAL MIXTURES OF EXPERTS AND THE EM ALGORITHM [J].
JORDAN, MI ;
JACOBS, RA .
NEURAL COMPUTATION, 1994, 6 (02) :181-214
[10]   New estimation and feature selection methods in mixture-of-experts models [J].
Khalili, Abbas .
CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2010, 38 (04) :519-539