Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions

被引:119
|
作者
Li, Qi [1 ]
Shen, Changqing [1 ]
Chen, Liang [1 ]
Zhu, Zhongkui [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215131, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial transfer learning; Variable working condition; Fault diagnosis; Knowledge mapping; Adversarial domain adaptation; CONVOLUTIONAL NEURAL-NETWORK; ROTATING MACHINERY; AUTOENCODER; FUSION;
D O I
10.1016/j.ymssp.2020.107095
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Artificial intelligence-based fault diagnosis has recently been the subject of extensive research. However, the model learned from source data exhibits poor performance in target pattern recognition due to different data distributions caused by variable working conditions. Therefore, the transfer learning (TL) method, which reuses acquired knowledge and diagnoses the target domain fault without labels, has elicited the attention of researchers. The common deep TL method reduces the distance between the source and target domains in accordance with a certain divergence criterion that should be designed differently for specific tasks, leading to poor generalization results. In this study, we propose a knowledge mapping-based adversarial domain adaptation (KMADA) method with a discriminator and a feature extractor to generalize knowledge from target to source domain. The discriminator achieves the distance metric of the neural network wherein the target feature extractor maps the target data into the source feature space to explore domain-invariant knowledge. To accelerate the adversarial training process, KMADA fully utilizes the parameters obtained from the supervised pre-training. In addition, comparison analysis with other TL methods indicates the irreplaceable superiority of the KMADA, which achieves the highest diagnosis accuracy. Moreover, the visualization results demonstrate that the proposed model extracts the domain-invariant feature to realize knowledge mapping diagnosis, and thus, the model exhibits considerable research prospects. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] An Intelligent Fault Diagnosis Method based on STFT and Convolutional Neural Network for Bearings Under Variable Working Conditions
    Zhong, Dawei
    Guo, Wei
    He, Da
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [42] Fault diagnosis method based on multimodal-deep tensor projection network under variable working conditions
    Li, Zhinong
    Liu, Chenyu
    Huang, Wenjing
    Wang, Fengtao
    Yang, Wenxian
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2025, 225
  • [43] Fault diagnosis of rolling bearing under variable operating conditions based on subdomain adaptation
    Dong S.-J.
    Zhu P.
    Pei X.-W.
    Li Y.
    Hu X.-L.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2022, 52 (02): : 288 - 295
  • [44] A Multisource Domain Adaptation Network for Process Fault Diagnosis Under Different Working Conditions
    Li, Shijin
    Yu, Jianbo
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2023, 70 (06) : 6272 - 6283
  • [45] Fault diagnosis method for bearings under variable working conditions based on transfer relation network
    Zhang, Ran
    Zhao, Zhihong
    Tao, Xu
    Yang, Shaopu
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (12)
  • [46] A Balanced Adversarial Domain Adaptation Method for Partial Transfer Intelligent Fault Diagnosis
    Wang, Yu
    Liu, Yanxu
    Chow, Tommy W. S.
    Gu, Junwei
    Zhang, Mingquan
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [47] Multi-source Unsupervised Domain Adaptation for Machinery Fault Diagnosis under Different Working Conditions
    Zhu, Jun
    Chen, Nan
    Shen, Changqing
    Wang, Dong
    2020 IEEE 18TH INTERNATIONAL CONFERENCE ON INDUSTRIAL INFORMATICS (INDIN), VOL 1, 2020, : 755 - 762
  • [48] A novel hierarchical transferable network for rolling bearing fault diagnosis under variable working conditions
    Weng, Chaoyang
    Lu, Baochun
    Gu, Qian
    Zhao, Xiaoli
    NONLINEAR DYNAMICS, 2023, 111 (12) : 11315 - 11334
  • [49] TSN: A novel intelligent fault diagnosis method for bearing with small samples under variable working conditions
    Shi, Peiming
    Wu, Shuping
    Xu, Xuefang
    Zhang, Bofei
    Liang, Pengfei
    Qiao, Zijian
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2023, 240
  • [50] A Novel Data-Driven Fault Feature Separation Method and Its Application on Intelligent Fault Diagnosis Under Variable Working Conditions
    Li, Shunming
    An, Zenghui
    Lu, Jiantao
    IEEE ACCESS, 2020, 8 (08): : 113702 - 113712