Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions

被引:118
|
作者
Li, Qi [1 ]
Shen, Changqing [1 ]
Chen, Liang [1 ]
Zhu, Zhongkui [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215131, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial transfer learning; Variable working condition; Fault diagnosis; Knowledge mapping; Adversarial domain adaptation; CONVOLUTIONAL NEURAL-NETWORK; ROTATING MACHINERY; AUTOENCODER; FUSION;
D O I
10.1016/j.ymssp.2020.107095
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Artificial intelligence-based fault diagnosis has recently been the subject of extensive research. However, the model learned from source data exhibits poor performance in target pattern recognition due to different data distributions caused by variable working conditions. Therefore, the transfer learning (TL) method, which reuses acquired knowledge and diagnoses the target domain fault without labels, has elicited the attention of researchers. The common deep TL method reduces the distance between the source and target domains in accordance with a certain divergence criterion that should be designed differently for specific tasks, leading to poor generalization results. In this study, we propose a knowledge mapping-based adversarial domain adaptation (KMADA) method with a discriminator and a feature extractor to generalize knowledge from target to source domain. The discriminator achieves the distance metric of the neural network wherein the target feature extractor maps the target data into the source feature space to explore domain-invariant knowledge. To accelerate the adversarial training process, KMADA fully utilizes the parameters obtained from the supervised pre-training. In addition, comparison analysis with other TL methods indicates the irreplaceable superiority of the KMADA, which achieves the highest diagnosis accuracy. Moreover, the visualization results demonstrate that the proposed model extracts the domain-invariant feature to realize knowledge mapping diagnosis, and thus, the model exhibits considerable research prospects. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A hierarchical adversarial multi-target domain adaptation for gear fault diagnosis under variable working condition based on raw acoustic signal
    Yao, Yong
    Chen, Qiuyi
    Gui, Gui
    Yang, Suixian
    Zhang, Sen
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [32] A New Multisensor Partial Domain Adaptation Method for Machinery Fault Diagnosis Under Different Working Conditions
    Zhu, Jun
    Wang, Yuanfan
    Xia, Min
    Williams, Darren
    de Silva, Clarence W.
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [33] Rolling Bearing Fault Diagnosis under Variable Working Conditions Based on Joint Distribution Adaptation and SVM
    Li, Ming
    Sun, Zhao-Hui
    He, Weihui
    Qiu, Siqi
    Liu, Bo
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [34] Class Subdomain Adaptation Network for Bearing Fault Diagnosis Under Variable Working Conditions
    Zhang, Lu
    Li, Hua
    Cui, Jie
    Li, Wei
    Wang, Xiaodong
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [35] Domain Adaptation-Based Transfer Learning for Gear Fault Diagnosis Under Varying Working Conditions
    Chen, Chao
    Shen, Fei
    Xu, Jiawen
    Yan, Ruqiang
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [36] Bearing Fault Diagnosis Based on Domain Adaptation Using Transferable Features under Different Working Conditions
    Tong, Zhe
    Li, Wei
    Zhang, Bo
    Zhang, Meng
    SHOCK AND VIBRATION, 2018, 2018
  • [37] Genetically optimised SMOTE-based adversarial discriminative domain adaptation for rotor fault diagnosis at variable operating conditions
    Rajagopalan, Sudhar
    Purohit, Ashish
    Singh, Jaskaran
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [38] Fault Diagnosis for Rolling Bearings Under Complex Working Conditions Based on Domain-Conditioned Adaptation
    Zhang, Xu
    Gu, Gaoquan
    MACHINES, 2024, 12 (11)
  • [39] Bearing fault diagnosis of variable working conditions based on conditional domain adversarial-joint maximum mean discrepancy
    Deng, Mingxing
    Zhou, Defan
    Ao, Jinyan
    Xu, Xiaowei
    Li, Zhixiong
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2025, 136 (11-12): : 5043 - 5060
  • [40] Fault Diagnosis in Wind Turbines Based on Weighted Joint Domain Adversarial Network Under Various Working Conditions
    Qi, Huaiyuan
    Han, Yinghua
    Tuo, Siwei
    Zhao, Qiang
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 15165 - 15175