Knowledge mapping-based adversarial domain adaptation: A novel fault diagnosis method with high generalizability under variable working conditions

被引:119
|
作者
Li, Qi [1 ]
Shen, Changqing [1 ]
Chen, Liang [1 ]
Zhu, Zhongkui [1 ]
机构
[1] Soochow Univ, Sch Mech & Elect Engn, Suzhou 215131, Peoples R China
基金
中国国家自然科学基金;
关键词
Adversarial transfer learning; Variable working condition; Fault diagnosis; Knowledge mapping; Adversarial domain adaptation; CONVOLUTIONAL NEURAL-NETWORK; ROTATING MACHINERY; AUTOENCODER; FUSION;
D O I
10.1016/j.ymssp.2020.107095
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Artificial intelligence-based fault diagnosis has recently been the subject of extensive research. However, the model learned from source data exhibits poor performance in target pattern recognition due to different data distributions caused by variable working conditions. Therefore, the transfer learning (TL) method, which reuses acquired knowledge and diagnoses the target domain fault without labels, has elicited the attention of researchers. The common deep TL method reduces the distance between the source and target domains in accordance with a certain divergence criterion that should be designed differently for specific tasks, leading to poor generalization results. In this study, we propose a knowledge mapping-based adversarial domain adaptation (KMADA) method with a discriminator and a feature extractor to generalize knowledge from target to source domain. The discriminator achieves the distance metric of the neural network wherein the target feature extractor maps the target data into the source feature space to explore domain-invariant knowledge. To accelerate the adversarial training process, KMADA fully utilizes the parameters obtained from the supervised pre-training. In addition, comparison analysis with other TL methods indicates the irreplaceable superiority of the KMADA, which achieves the highest diagnosis accuracy. Moreover, the visualization results demonstrate that the proposed model extracts the domain-invariant feature to realize knowledge mapping diagnosis, and thus, the model exhibits considerable research prospects. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Genetically optimised SMOTE-based adversarial discriminative domain adaptation for rotor fault diagnosis at variable operating conditions
    Rajagopalan, Sudhar
    Purohit, Ashish
    Singh, Jaskaran
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (10)
  • [22] Fault Diagnosis in Wind Turbines Based on Weighted Joint Domain Adversarial Network Under Various Working Conditions
    Qi, Huaiyuan
    Han, Yinghua
    Tuo, Siwei
    Zhao, Qiang
    IEEE SENSORS JOURNAL, 2023, 23 (13) : 15165 - 15175
  • [23] Domain Adaptation with Multilayer Adversarial Learning for Fault Diagnosis of Gearbox under Multiple Operating Conditions
    Zhang, Ming
    Lu, Weining
    Yang, Jun
    Wang, Duo
    Bin, Liang
    2019 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-QINGDAO), 2019,
  • [24] Unsupervised Method Based on Adversarial Domain Adaptation for Bearing Fault Diagnosis
    Li, Yao
    Yang, Rui
    Wang, Hongshu
    APPLIED SCIENCES-BASEL, 2023, 13 (12):
  • [25] Cross-Attention Transformer-Based Domain Adaptation: A Novel Method for Fault Diagnosis of Rotating Machinery With High Generalizability and Alignment Capability
    Yin, Hua
    Chen, Qitong
    Chen, Liang
    Shen, Changqing
    IEEE SENSORS JOURNAL, 2024, 24 (23) : 40049 - 40058
  • [26] Improved Adversarial Transfer Network for Bearing Fault Diagnosis under Variable Working Conditions
    Wang, Jun
    Ahmed, Hosameldin
    Chen, Xuefeng
    Yan, Ruqiang
    Nandi, Asoke K.
    APPLIED SCIENCES-BASEL, 2024, 14 (06):
  • [27] Deep multi-scale adversarial network with attention: A novel domain adaptation method for intelligent fault diagnosis*
    Zhao, Bo
    Zhang, Xianmin
    Zhan, Zhenhui
    Wu, Qiqiang
    JOURNAL OF MANUFACTURING SYSTEMS, 2021, 59 : 565 - 576
  • [28] Non-Uniformly Weighted Multisource Domain Adaptation Network For Fault Diagnosis Under Varying Working Conditions
    Zhang, Hongliang
    Zhang, Yuteng
    Wang, Rui
    Pan, Haiyang
    Chen, Bin
    NEURAL PROCESSING LETTERS, 2024, 56 (02)
  • [29] The fault diagnosis method of rolling bearing under variable working conditions based on deep transfer learning
    Dong, Shaojiang
    He, Kun
    Tang, Baoping
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2020, 42 (11)
  • [30] Improved CNN-Based Fault Diagnosis Method for Rolling Bearings under Variable Working Conditions
    Zhao X.
    Zhang Y.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (12): : 108 - 118