Generalized gravitational entropy

被引:726
作者
Lewkowycz, Aitor [1 ]
Maldacena, Juan [2 ]
机构
[1] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[2] Inst Adv Study, Sch Nat Sci, Princeton, VI USA
来源
JOURNAL OF HIGH ENERGY PHYSICS | 2013年 / 08期
关键词
AdS-CFT Correspondence; Black Holes; BLACK-HOLE ENTROPY; NOETHER CHARGE; DYNAMICS;
D O I
10.1007/JHEP08(2013)090
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We consider classical Euclidean gravity solutions with a boundary. The boundary contains a non-contractible circle. These solutions can be interpreted as computing the trace of a density matrix in the full quantum gravity theory, in the classical approximation. When the circle is contractible in the bulk, we argue that the entropy of this density matrix is given by the area of a minimal surface. This is a generalization of the usual black hole entropy formula to euclidean solutions without a Killing vector. A particular example of this set up appears in the computation of the entanglement entropy of a subregion of a field theory with a gravity dual. In this context, the minimal area prescription was proposed by Ryu and Takayanagi. Our arguments explain their conjecture.
引用
收藏
页数:29
相关论文
共 47 条
  • [1] [Anonymous], ARXIV13036955, Patent No. [1303.6955, 13036955]
  • [2] [Anonymous], ARXIV13037221
  • [3] Time dependent black holes and thermal equilibration
    Bak, Dongsu
    Gutperle, Michael
    Karch, Andreas
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (12):
  • [4] Three dimensional Janus and time-dependent black holes
    Bak, Dongsu
    Gutperle, Michael
    Hirano, Shinji
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2007, (02):
  • [5] BLACK-HOLE ENTROPY AND THE DIMENSIONAL CONTINUATION OF THE GAUSS-BONNET THEOREM
    BANADOS, M
    TEITELBOIM, C
    ZANELLI, J
    [J]. PHYSICAL REVIEW LETTERS, 1994, 72 (07) : 957 - 960
  • [6] 4 LAWS OF BLACK HOLE MECHANICS
    BARDEEN, JM
    CARTER, B
    HAWKING, SW
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) : 161 - 170
  • [7] BLACK HOLES AND ENTROPY
    BEKENSTEIN, JD
    [J]. PHYSICAL REVIEW D, 1973, 7 (08) : 2333 - 2346
  • [8] Belin A., ARXIV13062640
  • [9] Bianchi E., ARXIV12125183
  • [10] Dynamics of a self-gravitating thin cosmic string
    Boisseau, B
    Charmousis, C
    Linet, B
    [J]. PHYSICAL REVIEW D, 1997, 55 (02): : 616 - 622