Band engineering of Cu2+ doped In2xZn3(1-x)S3 solid solution with high photocatalytic activity for H2 production under visible light

被引:22
作者
Li, Fan [1 ,2 ,3 ]
Chen, Guoping [1 ,2 ,3 ]
Luo, Jianheng [1 ,2 ,3 ]
Huang, Qingli [1 ,2 ,3 ]
Luo, Yanhong [1 ,2 ,3 ]
Meng, Qingbo [1 ,2 ,3 ]
Li, Dongmei [1 ,2 ,3 ]
机构
[1] Chinese Acad Sci, Key Lab Renewable Energy, Beijing, Peoples R China
[2] Beijing Key Lab New Energy Mat & Devices, Beijing, Peoples R China
[3] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Matter Phys, Beijing 100080, Peoples R China
基金
中国国家自然科学基金;
关键词
HYDROGEN-PRODUCTION; AQUEOUS-SOLUTIONS; CADMIUM-SULFIDE; EVOLUTION; WATER; IRRADIATION; NANOCRYSTALS; BETA-IN2S3; DRIVEN; MICROSPHERES;
D O I
10.1039/c3cy00089c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile aqueous co-precipitation method is successfully introduced to synthesize ZnS-In2S3 solid solution (labeled In2xZn3(1-x)S3, x = 0-1) and Cu2+ doped In1.4Zn0.9S3 (x = 0.7) solid solution (labeled Cu(y)/In1.4Zn0.9S3, y = 0-4%). Their band gap energies are dependent on the compositional x and y values. The photocatalytic hydrogen generation rate can be remarkably improved to 438 mu mol h(-1) for Cu(1%)/In1.4Zn0.9S3 solid solution, in comparison with 79 mu mol h(-1) for un-doped In1.4Zn0.9S3 solid solution. It is suggested that the coupling of the two traditional band engineering strategies of making solid solution and metal ion doping is beneficial to obtain an appropriate conduction band position and effective charge separation of Cu2+ doped In2xZn3(1-x)S3 solid solution, thus improve the photocatalytic activity. This work provides a new opportunity to design novel efficient photocatalysts for water splitting into hydrogen.
引用
收藏
页码:1993 / 1999
页数:7
相关论文
共 54 条
[1]   Cu-doped ZnS hollow particle with high activity for hydrogen generation from alkaline sulfide solution under visible light [J].
Arai, Takeo ;
Senda, Shin-ichiro ;
Sato, Yoshinori ;
Takahashi, Hideyuki ;
Shinoda, Kozo ;
Jeyadevan, Balachandran ;
Tohji, Kazuyuki .
CHEMISTRY OF MATERIALS, 2008, 20 (05) :1997-2000
[2]   Self-templated synthesis of nanoporous CdS nanostructures for highly efficient photocatalytic hydrogen production under visible [J].
Bao, Ningzhong ;
Shen, Liming ;
Takata, Tsuyoshi ;
Domen, Kazunari .
CHEMISTRY OF MATERIALS, 2008, 20 (01) :110-117
[3]   Ball-milling combined calcination synthesis of MoS2/CdS photocatalysts for high photocatalytic H2 evolution activity under visible light irradiation [J].
Chen, Guoping ;
Li, Dongmei ;
Li, Fan ;
Fan, Yuzun ;
Zhao, Haofei ;
Luo, Yanhong ;
Yu, Richeng ;
Meng, Qingbo .
APPLIED CATALYSIS A-GENERAL, 2012, 443 :138-144
[4]   Semiconductor-based Photocatalytic Hydrogen Generation [J].
Chen, Xiaobo ;
Shen, Shaohua ;
Guo, Liejin ;
Mao, Samuel S. .
CHEMICAL REVIEWS, 2010, 110 (11) :6503-6570
[5]   Enhancement of photocatalytic H2 evolution on hexagonal CdS by a simple calcination method under visible light irradiation [J].
Fan, Yuzun ;
Chen, Guoping ;
Li, Dongmei ;
Li, Fan ;
Luo, Yanhong ;
Meng, Qingbo .
MATERIALS RESEARCH BULLETIN, 2011, 46 (12) :2338-2341
[6]   HETEROGENEOUS PHOTOCATALYSIS [J].
FOX, MA ;
DULAY, MT .
CHEMICAL REVIEWS, 1993, 93 (01) :341-357
[7]   Photocatalytic performance of tetragonal and cubic β-In2S3 for the water splitting under visible light irradiation [J].
Fu, Xianliang ;
Wang, Xuxu ;
Chen, Zhixin ;
Zhang, Zizhong ;
Li, Zhaohui ;
Leung, Dennis Y. C. ;
Wu, Ling ;
Fu, Xianzhi .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2010, 95 (3-4) :393-399
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   TaON and Ta3N5 as new visible light driven photocatalysts [J].
Hara, M ;
Hitoki, G ;
Takata, T ;
Kondo, JN ;
Kobayashi, H ;
Domen, K .
CATALYSIS TODAY, 2003, 78 (1-4) :555-560
[10]   Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations [J].
Inoue, Yasunobu .
ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (04) :364-386