PERFECT CRYSTALS FOR THE QUANTUM AFFINE ALGEBRA Uq(Cn(1))

被引:0
作者
Kang, Seok-Jin [1 ,2 ]
Kim, Myungho [1 ]
Lee, Inha [1 ]
Misra, Kailash C. [3 ]
机构
[1] Seoul Natl Univ, Dept Math Sci, 599 Gwanak Ro, Seoul 151747, South Korea
[2] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[3] North Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
来源
NEW TRENDS IN QUANTUM INTEGRABLE SYSTEMS | 2011年
关键词
Q-ANALOG; REPRESENTATIONS; BASES;
D O I
10.1142/9789814324373_0008
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we give an explicit isomorphism between the adjoint crystal Beta(e) given in Ref. 13 and the Kirillov-Reshetikhin crystals B-1,B-2e presented in Ref. 2 for C-n((1)) . Consequently we have a complete proof of perfectness of the crystals Beta(e). In the sequel we also present an explicit description of the involution sigma given in Ref. 2 for this special case.
引用
收藏
页码:139 / 156
页数:18
相关论文
共 22 条
[1]  
BENKART G, 2006, INT MATH RES NOTICES
[2]  
Fourier G., ARXIV08111604V1MATHR
[3]   Kirillov-Reshetikhin crystals for nonexceptional types [J].
Fourier, Ghislain ;
Okado, Masato ;
Schilling, Anne .
ADVANCES IN MATHEMATICS, 2009, 222 (03) :1080-1116
[4]  
Hatayama G, 2002, PROG MATH P, V23, P205
[5]  
Hatayama G., 1999, Recent developments in quantum affine algebras and related topics, V248, P243
[6]  
Hong J., 2002, Introduction to Quantum Groups and Crystal Bases, V42
[7]   COMBINATORICS OF REPRESENTATIONS OF UQ[SL(N)] AT Q = 0 [J].
JIMBO, M ;
MISRA, KC ;
MIWA, T ;
OKADO, M .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 136 (03) :543-566
[8]   Adjoint crystals and Young walls for Uq((sl)over-cap2) [J].
Jung, Ji Hye ;
Kang, Seok-Jin ;
Kim, Myungho ;
Kim, Sungsoon ;
Yu, Jeong-You .
EUROPEAN JOURNAL OF COMBINATORICS, 2010, 31 (03) :738-758
[9]  
KAC V. G., 1990, INFINITE DIMENSIONAL, VThird, DOI DOI 10.1017/CBO9780511626234
[10]  
Kang S-J, QUANTUM AFFINE UNPUB