The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis

被引:216
|
作者
Zhao, Lei [1 ,2 ]
Gao, Liping [3 ]
Wang, Hongxue [1 ,2 ]
Chen, Xiaotian [3 ]
Wang, Yunsheng [3 ]
Yang, Hua [1 ,2 ]
Wei, Chaoling [1 ,2 ]
Wan, Xiaochun [1 ,2 ]
Xia, Tao [1 ,2 ]
机构
[1] Anhui Agr Univ, Key Lab Tea Biochem & Biotechnol, Minist Agr, Hefei 230036, Anhui, Peoples R China
[2] Anhui Agr Univ, Minist Educ, Hefei 230036, Anhui, Peoples R China
[3] Anhui Agr Univ, Coll Life Sci, Hefei 230036, Anhui, Peoples R China
关键词
Camellia sinensis; MYB; bHLH; Bioinformatic analysis; Flavonoid biosynthetic pathway; PROANTHOCYANIDIN BIOSYNTHESIS; CAMELLIA-SINENSIS; ANTHOCYANIN BIOSYNTHESIS; GENE ENCODES; DOMAIN PROTEIN; REPEAT PROTEIN; GENOME-WIDE; ARABIDOPSIS; MYB; LOOP;
D O I
10.1007/s10142-012-0301-4
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
R2R3-MYB, bHLH, and WD40 proteins have been shown to control multiple enzymatic steps in the biosynthetic pathway responsible for the production of flavonoids, important secondary metabolites in Camellia sinensis. Few related transcription factor genes have been documented. The presence of R2R3-MYB, bHLH, and WD40 were statistically and bioinformatically analyzed on 127,094 C. sinensis transcriptome unigenes, resulting in identification of 73, 49, and 134 genes, respectively. C. sinensis phylogenetic trees were constructed for R2R3-MYB and bHLH proteins using previous Arabidopsis data and further divided into 27 subgroups (Sg) and 32 subfamilies. Motifs in some R2R3-MYB subgroups were redefined. Furthermore, Sg26 and Sg27 were expanded compared to Arabidopsis data, and bHLH proteins in C. sinensis were grouped into nine subfamilies. According to the functional annotation of Arabidopsis, flavonoid biosynthesis in C. sinensis was predicted to include R2R3-MYB genes in Sg4 (6), Sg5 (2), and Sg7 (1), as well as bHLH genes in subfamily 2 (2) and subfamily 24 (5). The wide evolutionary gap prevented phylogenetic analysis of WD40s; however, a single gene, CsWD40-1, was observed to share 80.4 % sequence homogeny with AtTTG1. Analysis of CsMYB4-1, CsMYB4-2, CsMYB4-3, CsMYB4-4, CsMYB5-1, and CsMYB5-2 revealed the interaction motif [DE]Lx2[RK]x3Lx6Lx3R, potentially contributing to the specificity of the bHLH partner in the stable MYB-bHLH complex. Full-length end-to-end polymerase chain reaction (PCR) and quantitative reverse transcriptase (qRT)-PCR were used to validate selected genes and generate relative expression ratio profiles in C. sinensis leaves by developmental stage and treatment conditions, including hormone and wound treatments. Potential target binding sites were predicted.
引用
收藏
页码:75 / 98
页数:24
相关论文
共 50 条
  • [1] The R2R3-MYB, bHLH, WD40, and related transcription factors in flavonoid biosynthesis
    Lei Zhao
    Liping Gao
    Hongxue Wang
    Xiaotian Chen
    Yunsheng Wang
    Hua Yang
    Chaoling Wei
    Xiaochun Wan
    Tao Xia
    Functional & Integrative Genomics, 2013, 13 : 75 - 98
  • [2] Identification and Characterization of R2R3-MYB and bHLH Transcription Factors Regulating Anthocyanin Biosynthesis in Gentian Flowers
    Nakatsuka, Takashi
    Haruta, Katia Sanae
    Pitaksutheepong, Chetsadaporn
    Abe, Yoshiko
    Kakizaki, Yuko
    Yamamoto, Kazuo
    Shimada, Norimoto
    Yamamura, Saburo
    Nishihara, Masahiro
    PLANT AND CELL PHYSIOLOGY, 2008, 49 (12) : 1818 - 1829
  • [3] Identification and Expression Analysis of R2R3-MYB Transcription Factors Associated with Flavonoid Biosynthesis in Panax quinquefolius
    Song, Guimei
    Yan, Yan
    Guo, Chun
    Chen, Jiankang
    Wang, Yumeng
    Wang, Yingping
    Zhang, Jiaxin
    Gao, Chang
    Lian, Junmei
    Piao, Xiangmin
    Di, Peng
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (07)
  • [4] An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba
    Feng Xu
    Yingjing Ning
    Weiwei Zhang
    Yongling Liao
    Linling Li
    Hua Cheng
    Shuiyuan Cheng
    Functional & Integrative Genomics, 2014, 14 : 177 - 189
  • [5] An R2R3-MYB transcription factor as a negative regulator of the flavonoid biosynthesis pathway in Ginkgo biloba
    Xu, Feng
    Ning, Yingjing
    Zhang, Weiwei
    Liao, Yongling
    Li, Linling
    Cheng, Hua
    Cheng, Shuiyuan
    FUNCTIONAL & INTEGRATIVE GENOMICS, 2014, 14 (01) : 177 - 189
  • [6] An R2R3-MYB Transcription Factor Regulates Capsaicinoid Biosynthesis
    Arce-Rodriguez, Magda L.
    Ochoa-Alejoa, Neftali
    PLANT PHYSIOLOGY, 2017, 174 (03) : 1359 - 1370
  • [7] Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha
    Hiroyoshi Kubo
    Shunsuke Nozawa
    Takuma Hiwatashi
    Youichi Kondou
    Ryo Nakabayashi
    Tetsuya Mori
    Kazuki Saito
    Kojiro Takanashi
    Takayuki Kohchi
    Kimitsune Ishizaki
    Journal of Plant Research, 2018, 131 : 849 - 864
  • [8] Biosynthesis of riccionidins and marchantins is regulated by R2R3-MYB transcription factors in Marchantia polymorpha
    Kubo, Hiroyoshi
    Nozawa, Shunsuke
    Hiwatashi, Takuma
    Kondou, Youichi
    Nakabayashi, Ryo
    Mori, Tetsuya
    Saito, Kazuki
    Takanashi, Kojiro
    Kohchi, Takayuki
    Ishizaki, Kimitsune
    JOURNAL OF PLANT RESEARCH, 2018, 131 (05) : 849 - 864
  • [9] EbMYBP1, a R2R3-MYB transcription factor, promotes flavonoid biosynthesis in Erigeron breviscapus
    Zhao, Yan
    Zhang, Guanghui
    Tang, Qingyan
    Song, Wanling
    Gao, Qingqing
    Xiang, Guisheng
    Li, Xia
    Liu, Guanze
    Fan, Wei
    Li, Xiaoning
    Yang, Shengchao
    Zhai, Chenxi
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [10] R2R3-MYB Transcription Factors Regulate Anthocyanin Biosynthesis in Grapevine Vegetative Tissues
    Xie, Sha
    Lei, Yujuan
    Chen, Huawei
    Li, Junnan
    Chen, Huangzhao
    Zhang, Zhenwen
    FRONTIERS IN PLANT SCIENCE, 2020, 11