A low-cost and high performance ball-milled Si-based negative electrode for high-energy Li-ion batteries

被引:300
作者
Gauthier, Magali [1 ,2 ]
Mazouzi, Driss [1 ]
Reyter, David [2 ]
Lestriez, Bernard [1 ]
Moreau, Philippe [1 ]
Guyomard, Dominique [1 ]
Roue, Lionel [2 ]
机构
[1] Univ Nantes, Inst Mat Jean Rouxel IMN, CNRS, F-44322 Nantes 3, France
[2] INRS Energie Mat & Telecommun, Varennes, PQ J3X 1S2, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
HIGH-CAPACITY; ELECTROCHEMICAL PERFORMANCE; LITHIUM STORAGE; ANODE MATERIAL; SILICON ANODE; ALLOY ANODES; NANOPARTICLES; PARTICLES; MECHANISM; MAGNESIUM;
D O I
10.1039/c3ee41318g
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A Si-based anode with improved performance can be achieved using high-energy ball-milling as a cheap and easy process to produce Si powders prepared from a coarse-grained material. Ball-milled powders present all the advantages of nanometric Si powders, but not the drawbacks. Milled powders are nanostructured with micrometric agglomerates (median size similar to 10 mu m), made of submicrometric cold-welded particles with a crystallite size of similar to 10 nm. The micrometric particle size provides handling and non-toxicity advantages compared to nanometric powders, as well as four times higher tap density. The nanostructuration is assumed to provide a shortened Li+ diffusion path, a fast Li+ diffusion path along grain boundaries and a smoother phase transition upon cycling. Compared to non-milled 1-5 mu m powders, the improved performance of nanostructured milled Si powders is linked to a strong lowering of particle disconnection at each charge, while the irreversibility due to SEI formation remains unchanged. An electrode prepared in acidic conditions with the CMC binder achieves 600 cycles at more than 1170 mA h per gram of the milled Si-based electrode, in an electrolyte containing FEC/VC SEI-forming additives, with a coulombic efficiency above 99%, compared to less than 100 cycles at the same capacity for an electrode containing nanometric Si powder.
引用
收藏
页码:2145 / 2155
页数:11
相关论文
共 55 条
[21]   Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells [J].
Kasavajjula, Uday ;
Wang, Chunsheng ;
Appleby, A. John .
JOURNAL OF POWER SOURCES, 2007, 163 (02) :1003-1039
[22]  
Kim H., 2008, ANGEW CHEM, V120, P10305, DOI DOI 10.1002/ANGE.200804355
[23]   Three-Dimensional Porous Silicon Particles for Use in High-Performance Lithium Secondary Batteries [J].
Kim, Hyunjung ;
Han, Byunghee ;
Choo, Jaebum ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (52) :10151-10154
[24]  
Klug H.P., 1974, XRAY DIFFRACTION PRO, V2nd, P992
[25]   A Major Constituent of Brown Algae for Use in High-Capacity Li-Ion Batteries [J].
Kovalenko, Igor ;
Zdyrko, Bogdan ;
Magasinski, Alexandre ;
Hertzberg, Benjamin ;
Milicev, Zoran ;
Burtovyy, Ruslan ;
Luzinov, Igor ;
Yushin, Gleb .
SCIENCE, 2011, 334 (6052) :75-79
[26]   On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries [J].
Lestrie, B. ;
Bahri, S. ;
Sandu, I. ;
Roue, L. ;
Guyomard, D. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (12) :2801-2806
[27]   A high capacity nano-Si composite anode material for lithium rechargeable batteries [J].
Li, H ;
Huang, XJ ;
Chen, LQ ;
Wu, ZG ;
Liang, Y .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (11) :547-549
[28]   An in situ X-ray diffraction study of the reaction of Li with crystalline Si [J].
Li, Jing ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2007, 154 (03) :A156-A161
[29]   In Situ 119Sn Mossbauer Effect Study of the Reaction of Lithium with Si Using a Sn Probe [J].
Li, Jing ;
Smith, Aaron ;
Sanderson, R. J. ;
Hatchard, T. D. ;
Dunlap, R. A. ;
Dahn, J. R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156 (04) :A283-A288
[30]  
Magasinski A, 2010, NAT MATER, V9, P353, DOI [10.1038/NMAT2725, 10.1038/nmat2725]