From Markov Jump Systems to Two Species Competitive Lotka-Volterra Equations with Diffusion

被引:5
作者
Wang, Xue Qiang [1 ,3 ]
Bo, Li Jun [2 ]
Wang, Yong Jin [1 ,3 ]
机构
[1] Nankai Univ, Sch Math Sci, Tianjin 300071, Peoples R China
[2] Xidian Univ, Dept Math, Xian 710071, Peoples R China
[3] Nankai Univ, LPMC, Tianjin 300071, Peoples R China
关键词
Markov jump system; competitive Lotka-Volterra equation; weak convergence; CHEMICAL-REACTIONS; LIMIT-THEOREMS; MODEL;
D O I
10.1007/s10114-008-5587-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we start at a random evolution system on biological particles, which is described by a Markov jump system. Under a suitable scaling, we perform a proper approximation procedure. Then the so-called weak convergence of Markov processes and Martingales allow us to establish a (deterministic) two species competitive Lotka-Volterra equation.
引用
收藏
页码:157 / 170
页数:14
相关论文
共 16 条
[1]  
Adams RA, 1978, Pure and applied mathematics, V65
[2]   DETERMINISTIC LIMIT OF THE STOCHASTIC-MODEL OF CHEMICAL-REACTIONS WITH DIFFUSION [J].
ARNOLD, L ;
THEODOSOPULU, M .
ADVANCES IN APPLIED PROBABILITY, 1980, 12 (02) :367-379
[3]  
Blount D, 1996, ANN PROBAB, V24, P639
[5]  
BLOUNT D., 1992, Ann. Appl. Probab., V2, P131
[6]  
Either S., 1986, Markov Processes: Characterization and Convergence
[7]  
Gugg D., 2004, Stoch. Dyn, V4, P245
[8]  
Han HD, 2005, J COMPUT MATH, V23, P449
[10]  
Kouritzin MA, 2002, ANN APPL PROBAB, V12, P1039