We propose a pulse excitation method of coherent population trapping (CPT) with a liquid crystal optical modulator. Since liquid crystals enable reductions in size, weight, cost, and power consumption compared with acousto-optical modulators (AOMs), our method is suitable for chip-scale atomic clocks (CSACs). Experiments showed that pulse excitation with a liquid crystal modulator can narrow the CPT resonance linewidth and reduce the light shift effect using a Rb-87 gas cell and the D-1-line vertical-cavity surface-emitting laser (VCSEL). The CPT resonance linewidth and light shift sensitivity were less than one-eighth and one-third those for continuous excitation, respectively. They also showed that our method is comparable to that based on an AOM. (C) 2012 The Japan Society of Applied Physics