PRINCIPAL AND SYNTACTIC CONGRUENCES IN CONGRUENCE-DISTRIBUTIVE AND CONGRUENCE-PERMUTABLE VARIETIES

被引:9
作者
Davey, Brian A. [1 ]
Jackson, Marcel [1 ]
Maroti, Miklos [2 ]
Mckenzie, Ralph N. [3 ]
机构
[1] La Trobe Univ, Dept Math, Bundoora, Vic 3086, Australia
[2] Univ Szeged, Janos Bolyai Math Inst, Szeged, Hungary
[3] Vanderbilt Univ, Dept Math, Nashville, TN USA
基金
澳大利亚研究理事会;
关键词
finitely determined syntactic congruences; term finite principal congruences; finite principal length; congruence distributive; congruence modular; congruence permutable;
D O I
10.1017/S144678870800061X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof that a finitely generated congruence-distributive variety has finitely determined syntactic congruences (or, equivalently, term finite principal congruences), and show that the same does not hold for finitely generated congruence-permutable varieties, even under the additional assumption that the variety is residually very finite.
引用
收藏
页码:59 / 74
页数:16
相关论文
共 17 条
[1]  
ALMEIDA J, 1995, NATO ADV SCI I C, V466, P73
[2]   Approximate distributive laws and finite equational bases for finite algebras in congruence-distributive varieties [J].
Baker, KA ;
Wang, J .
ALGEBRA UNIVERSALIS, 2005, 54 (04) :385-396
[3]   An extension of Willard's finite basis theorem: Congruence meet-semidistributive varieties of finite critical depth [J].
Baker, KA ;
McNulty, GF ;
Wang, J .
ALGEBRA UNIVERSALIS, 2005, 52 (2-3) :289-302
[4]  
BURRIS S, 1980, GRADUATE TEXTS MATH, V78
[5]   ZERO-DIMENSIONAL COMPACT ASSOCIATIVE DISTRIBUTIVE UNIVERSAL ALGEBRAS [J].
CHOE, TH .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 42 (02) :607-613
[6]   The axiomatizability of topological prevarieties [J].
Clark, D. M. ;
Davey, B. A. ;
Jackson, M. G. ;
Pitkethly, J. G. .
ADVANCES IN MATHEMATICS, 2008, 218 (05) :1604-1653
[7]   Standard topological algebras: syntactic and principal congruences and profiniteness [J].
Clark, DM ;
Davey, BA ;
Freese, RS ;
Jackson, M .
ALGEBRA UNIVERSALIS, 2005, 52 (2-3) :343-376
[8]  
Clark DM, 2003, HOUSTON J MATH, V29, P859
[9]  
Clinkenbeard DJ., 1979, ALGEBR UNIV, V9, P322, DOI [10.1007/BF02488044, DOI 10.1007/BF02488044]
[10]  
DAY BJ, 1970, B AUSTR MATH SOC, V20, P71