A hybrid method based on level set and 3D region growing for segmentation of the thoracic aorta

被引:15
作者
Antonio Martinez-Mera, Juan [1 ]
Tahoces, Pablo G. [1 ]
Carreira, Jose M. [2 ]
Juan Suarez-Cuenca, Jorge [3 ]
Souto, Miguel [2 ]
机构
[1] Univ Santiago de Compostela, Ctr Singular Invest Tecnoloxias Informacin CITIUS, Santiago De Compostela, Spain
[2] Univ Hosp Complex Santiago de Compostela CHUS, Santiago De Compostela, Spain
[3] Univ Santiago de Compostela, Santiago De Compostela, Spain
关键词
Aorta; aneurysm; computed tomography; level set; segmentation;
D O I
10.3109/10929088.2013.816978
中图分类号
R61 [外科手术学];
学科分类号
摘要
This study sought to develop a completely automatic method for image segmentation of the thoracic aorta. We used a total of 4682 images from 10 consecutive patients. The proposed method is based on the use of level set and region growing, automatically initialized using the Hough transform. The results obtained were compared to those of manual segmentation as performed by an external expert radiologist. Concordance between the developed method and manual segmentation ranged from 92.79 to 95.77% in the descending regions of the aorta and from 90.68 to 96.54% in the ascending regions, with a mean value of 93.83% being obtained for total segmentation.
引用
收藏
页码:109 / 117
页数:9
相关论文
共 15 条
[1]  
de Bruijne M, 2003, LECT NOTES COMPUT SC, V2732, P136
[2]   Multiple hypothesis template tracking of small 3D vessel structures [J].
Friman, Ola ;
Hindennach, Milo ;
Kuehnel, Caroline ;
Peitgen, Heinz-Otto .
MEDICAL IMAGE ANALYSIS, 2010, 14 (02) :160-171
[3]  
Gülsün MA, 2008, LECT NOTES COMPUT SC, V5241, P602, DOI 10.1007/978-3-540-85988-8_72
[4]  
Kovacs T., 2006, Bildverarbeitung fur die Medizin 2006, P161
[5]   Automated segmentation of thoracic aorta in non-contrast CT images [J].
Kurkure, Uday ;
Avila-Montes, Olga C. ;
Kakadiaris, Ioannis A. .
2008 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: FROM NANO TO MACRO, VOLS 1-4, 2008, :29-+
[6]   A review of 3D vessel lumen segmentation techniques: Models, features and extraction schemes [J].
Lesage, David ;
Angelini, Elsa D. ;
Bloch, Isabelle ;
Funka-Lea, Gareth .
MEDICAL IMAGE ANALYSIS, 2009, 13 (06) :819-845
[7]   SHAPE MODELING WITH FRONT PROPAGATION - A LEVEL SET APPROACH [J].
MALLADI, R ;
SETHIAN, JA ;
VEMURI, BC .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1995, 17 (02) :158-175
[8]   SCALE-SPACE AND EDGE-DETECTION USING ANISOTROPIC DIFFUSION [J].
PERONA, P ;
MALIK, J .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1990, 12 (07) :629-639
[9]   Segmentation of medical images using adaptive region growing [J].
Pohle, R ;
Toennies, KD .
MEDICAL IMAGING: 2001: IMAGE PROCESSING, PTS 1-3, 2001, 4322 :1337-1346
[10]   Model-based quantitative AAA image analysis using a priori knowledge [J].
Subasic, M ;
Loncaric, S ;
Sorantin, E .
COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2005, 80 (02) :103-114